ERC Consolidator Grant for HZB researcher Robert Seidel

Dr. Robert Seidel was awarded an ERC Consolidator Grant for his research project WATER X.

Dr. Robert Seidel was awarded an ERC Consolidator Grant for his research project WATER X. © HZB / Kevin Fuchs

The WATER-X research project is funded by the EU under the project number 101126299.

The WATER-X research project is funded by the EU under the project number 101126299.

Physicist Dr Robert Seidel has been awarded a Consolidator Grant by the European Research Council (ERC). Over the next five years, he will receive a total of two million euros for his research project WATER-X. Seidel will use state-of-the-art X-ray techniques at BESSY II to study nanoparticles in aqueous solution for the photocatalytic production of "green" hydrogen.

With the Consolidator Grant, the ERC supports researchers with several years of experience who are now planning a large-scale research project. The physicist Robert Seidel is an expert in X-ray methods at BESSY II. In high-profile published studies, he has already shown that water still holds many surprises.

In his ERC project WATER-X, he is focusing on the process of photocatalysis, in which water molecules are split into hydrogen and oxygen. If the energy required for the catalysis comes from renewable sources, the hydrogen produced is considered "green". Hydrogen will play an important role in the fossil-free energy system of the future, whether as energy storage, fuel or raw material for industry. However, catalysts are needed for a highly efficient process, and this is where the WATER-X project comes in.

"In WATER-X, we will investigate the ultrafast processes on catalytically active nanoparticles in water that can be activated by light," says Seidel. While the entire photocatalytic water splitting process is relatively slow (milliseconds to seconds), the light-induced processes on the catalyst particles are so fast (picoseconds to nanoseconds) that they have been very difficult to study experimentally. The team will focus on four different transition metal oxides that can be activated by light (photons) and are considered interesting candidates for inexpensive and efficient catalysts.

 Seidel will investigate these picosecond processes at the interfaces of transition metal oxide nanoparticles in water by combining the "liquid microjet setup" at BESSY II with time-resolved femtosecond laser photoelectron spectroscopy. For the first time, short-lived molecular intermediates and their decay mechanisms could be precisely observed experimentally.

"At the end of the WATER-X project, we will understand the light-induced processes between catalyst nanoparticles and water much better and also, how to improve them," says Seidel. This could significantly accelerate the development of novel, highly efficient catalysts for many purposes, not just green hydrogen.

The WATER-X research project is funded by the EU under the project number 101126299.

WATER-X: PHOTO-INDUCED ELECTRON DYNAMICS AT THE TRANSITION-METAL OXIDE–WATER INTERFACE FROM TIME RESOLVED LIQUID-JET PHOTOEMISSION

arö

  • Copy link

You might also be interested in

  • The Enabler - portrait of Saskia Vormfelde
    Portrait
    17.09.2025
    The Enabler - portrait of Saskia Vormfelde
    Saskia Vormfelde takes on her new role as Administrative Director in September – and she is bringing more to the table than just a knack for accounting.
  • Porous Radical Organic framework improves lithium-sulphur batteries
    Science Highlight
    15.09.2025
    Porous Radical Organic framework improves lithium-sulphur batteries
    A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulphur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulphides, which would shorten the battery life. Some of the experimental analyses were conducted at the BAMline at BESSY II.
  • Metallic nanocatalysts: what really happens during catalysis
    Science Highlight
    10.09.2025
    Metallic nanocatalysts: what really happens during catalysis
    Using a combination of spectromicroscopy at BESSY II and microscopic analyses at DESY's NanoLab, a team has gained new insights into the chemical behaviour of nanocatalysts during catalysis. The nanoparticles consisted of a platinum core with a rhodium shell. This configuration allows a better understanding of structural changes in, for example, rhodium-platinum catalysts for emission control. The results show that under typical catalytic conditions, some of the rhodium in the shell can diffuse into the interior of the nanoparticles. However, most of it remains on the surface and oxidises. This process is strongly dependent on the surface orientation of the nanoparticle facets.