ERC Consolidator Grant for HZB researcher Robert Seidel

Dr. Robert Seidel was awarded an ERC Consolidator Grant for his research project WATER X.

Dr. Robert Seidel was awarded an ERC Consolidator Grant for his research project WATER X. © HZB / Kevin Fuchs

The WATER-X research project is funded by the EU under the project number 101126299.

The WATER-X research project is funded by the EU under the project number 101126299.

Physicist Dr Robert Seidel has been awarded a Consolidator Grant by the European Research Council (ERC). Over the next five years, he will receive a total of two million euros for his research project WATER-X. Seidel will use state-of-the-art X-ray techniques at BESSY II to study nanoparticles in aqueous solution for the photocatalytic production of "green" hydrogen.

With the Consolidator Grant, the ERC supports researchers with several years of experience who are now planning a large-scale research project. The physicist Robert Seidel is an expert in X-ray methods at BESSY II. In high-profile published studies, he has already shown that water still holds many surprises.

In his ERC project WATER-X, he is focusing on the process of photocatalysis, in which water molecules are split into hydrogen and oxygen. If the energy required for the catalysis comes from renewable sources, the hydrogen produced is considered "green". Hydrogen will play an important role in the fossil-free energy system of the future, whether as energy storage, fuel or raw material for industry. However, catalysts are needed for a highly efficient process, and this is where the WATER-X project comes in.

"In WATER-X, we will investigate the ultrafast processes on catalytically active nanoparticles in water that can be activated by light," says Seidel. While the entire photocatalytic water splitting process is relatively slow (milliseconds to seconds), the light-induced processes on the catalyst particles are so fast (picoseconds to nanoseconds) that they have been very difficult to study experimentally. The team will focus on four different transition metal oxides that can be activated by light (photons) and are considered interesting candidates for inexpensive and efficient catalysts.

 Seidel will investigate these picosecond processes at the interfaces of transition metal oxide nanoparticles in water by combining the "liquid microjet setup" at BESSY II with time-resolved femtosecond laser photoelectron spectroscopy. For the first time, short-lived molecular intermediates and their decay mechanisms could be precisely observed experimentally.

"At the end of the WATER-X project, we will understand the light-induced processes between catalyst nanoparticles and water much better and also, how to improve them," says Seidel. This could significantly accelerate the development of novel, highly efficient catalysts for many purposes, not just green hydrogen.

The WATER-X research project is funded by the EU under the project number 101126299.

WATER-X: PHOTO-INDUCED ELECTRON DYNAMICS AT THE TRANSITION-METAL OXIDE–WATER INTERFACE FROM TIME RESOLVED LIQUID-JET PHOTOEMISSION

arö


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.

  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.