Revolutionary material science: Helmholtz High Impact Award for Novel Tandem Solar Cells

Eva Unger (3. v.l., Helmholtz-Zentrum Berlin) und Michael Saliba (4. v.l., Forschungszentrum Jülich) nehmen stellvertretend für ihr Forschungsteam den ersten Helmholtz High Impact Award von Helmholtz-Präsident Otmar D.Wiestler (2. v.l.), Bundesforschungsministerin Bettina Stark-Watzinger (5. v.l.) und Laudatorin Carla Seidel (1. v.l., BASF) entgegen.

Eva Unger (3. v.l., Helmholtz-Zentrum Berlin) und Michael Saliba (4. v.l., Forschungszentrum Jülich) nehmen stellvertretend für ihr Forschungsteam den ersten Helmholtz High Impact Award von Helmholtz-Präsident Otmar D.Wiestler (2. v.l.), Bundesforschungsministerin Bettina Stark-Watzinger (5. v.l.) und Laudatorin Carla Seidel (1. v.l., BASF) entgegen. © Till Budde

A multidisciplinary team from Helmholtz-Zentrum Berlin (HZB) and Forschungszentrum Jülich (FZJ) is researching and improving novel tandem solar cells in order to bring them into application. For their approach and research achievements, Steve Albrecht, Antonio Abate and Eva Unger from HZB and Michael Saliba from FZJ received the High Impact Award on 27 September 2023. With the award, which comes with 50,000 euros in prize money, the Helmholtz Association and the Donors’ Association for the Promotion of Sciences and Humanities in Germany honour innovative approaches that have the potential to act as game-changers.

Current solar cells mostly use silicon to convert sunlight into electricity, but can only use a comparatively small part of the sun’s radiation for this purpose. The mineral perovskite, however, is much more efficient. Solar cells with a perovskite layer can absorb just as much light, but are up to 100 times thinner. This makes them particularly suitable for applications on curved surfaces, for example as foldable solar cells on cars or building facades. The layers can be produced from inexpensive materials and printed over large areas with little energy input using industrial technologies. If silicon and perovskite are combined, the performance can be increased even further. So far, however, these “tandem solar cells” face a number of challenges that prevent their widespread use: perovskites are not yet stable enough, they react sensitively to moisture or heat and disintegrate quickly. In addition, they contain lead – a substitute must be found for environmentally compatible application.

Steve Albrecht, Antonio Abate and Eva Unger from Helmholtz-Zentrum Berlin and Michael Saliba from Forschungszentrum Jülich are combining their expertise in electrical engineering, chemistry and physics to meet these challenges. With their research, they are making fundamental, pioneering contributions to enable the commercial and environmentally friendly production of perovskites for photovoltaics and other opto-electronic applications. With great success: Current research work by the team shows that perovskite silicon tandem solar cells can convert over 30 percent of solar energy into electricity so far. The team wants to make their research publicly accesible to the scientific community in order to make the results transparent and comparable.

The four researchers have now received the first Helmholtz High Impact Award for their approach and results. “The team led by Steve Albrecht and Eva Unger impressively demonstrates the strength of the Helmholtz Association: it combines different disciplines and works together across fundamental boundaries to tackle one of the greatest challenges of our time: energy transition. With their unique expertise and innovative strength, the four scientists are making a decisive contribution to advancing and shaping cutting-edge research in the field of photovoltaics. I warmly congratulate this young international team on their well-deserved High Impact Award,” says Helmholtz President Otmar D. Wiestler.

About the Helmholtz High Impact Award

Together with the Donors’ Association for the Promotion of Sciences and Humanities in Germany (Stifterverband für die Deutsche Wissenschaft), the Helmholtz Association is presenting the newly established “Helmholtz High Impact Award” for the first time this year. The award, which is endowed with 50,000 euros, recognises highly innovative interdisciplinary contributions that address a major challenge from science, industry or society. The focus is on new approaches that have the potential to act as a ‘game changer’ in a relevant problem area. The award ceremony took place at this year’s Helmholtz Annual Meeting on 27 September.

  • Copy link

You might also be interested in

  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.
  • Solar cells on moon glass for a future base on the moon
    Science Highlight
    07.04.2025
    Solar cells on moon glass for a future base on the moon
    Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.
  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.