Technology Transfer Prize: Tandem solar cells step closer to industrial pilot production

Congratulations! This year's HZB Technology Transfer Prize goes to Dr. Kári Sveinbjörnsson and Bor Li for developing tandem solar cells in cooperation with a leading PV manufacturer.

Congratulations! This year's HZB Technology Transfer Prize goes to Dr. Kári Sveinbjörnsson and Bor Li for developing tandem solar cells in cooperation with a leading PV manufacturer. © S. Zerbe / HZB

Stark im Technologietransfer: Zehn Teams aus dem HZB bewarben sich um den Technologietransfer-Preis – mit einer beeindruckenden Vielfalt an Projekten.

Stark im Technologietransfer: Zehn Teams aus dem HZB bewarben sich um den Technologietransfer-Preis – mit einer beeindruckenden Vielfalt an Projekten. © S. Zerbe / HZB

Tandem solar cells achieve high efficiencies: by combining two different types of solar cells, more sunlight is converted into electricity. PV manufacturer Qcells and a HZB team led by Dr. Kári Sveinbjörnsson and Bor Li have developed the technology to an extent, that Qcells invested in setting up a pilot line for the development of tandem cells in Saxony-Anhalt. For this successful transfer into industrial application, both researchers received the Technology Transfer Prize of the Helmholtz-Zentrum Berlin worth 5,000 euros, on 4. October 2023.

Tandem solar cells consist of a silicon solar cell (bottom cell) and a perovskite solar cell (top cell). The team from the HZB used a commercially produced silicon cell from the company Qcells. Since these are already available on the market, it is more attractive for PV manufacturers to invest in the innovative tandem technology and develop it further for mass production.

The cooperation with manufacturer Qcells has existed since 2018. As part of several projects, a pilot line for perovskite tandem solar cells was developed at HZB, which specifically targets the upscaling of perovskite silicon tandem solar cells. The development of tandem technology on a pilot line at Qcells in Thalheim, Germany, is being funded as part of a European funding project in which HZB is involved as a project partner. “Our collaboration has not only led to demonstrable results, but has also attracted the attention of key players in the PV industry,” says Kári Sveinbjörnsson. “We are very happy about the recognition, as there were a lot of good technology transfer projects in the running,” adds Bor Li.

The award jury, consisting of members of the HZB Industry Advisory Board, justified their decision by saying that the project demonstrates very well how technology transfer can bring research results into application more quickly. They were convinced by the fact that the project had already led to significant investments on both sides.

A total of ten competition entries were submitted by research teams from HZB to this year’s Technology Transfer Prize, demonstrating HZB’s innovative strength in a broad range of applications. Second place went to a team led by Dr. Gert Weber. It developed dyes from cyanobacteria that can be safely used in food, for example. A team led by Dr. Thomas Dittrich received third prize for a newly developed spectrometer that is suitable for photoelectric characterisation of solar cells and high-performance electronics in a wide wavelength range, thus closing a gap in the market. At the award ceremony, the jury was very impressed by the variety of the proposals. This confirmed HZB’s image as a technological think tank.

sz

  • Copy link

You might also be interested in

  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.
  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    News
    26.03.2025
    Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    Samira Jama Aden, Architect Design Research, has joined the ETIP PV - The European Technology & Innovation Platform for Photovoltaics working group “Environmental, Social and Governance (ESG)”.