Technology Transfer Prize: Tandem solar cells step closer to industrial pilot production

Congratulations! This year's HZB Technology Transfer Prize goes to Dr. Kári Sveinbjörnsson and Bor Li for developing tandem solar cells in cooperation with a leading PV manufacturer.

Congratulations! This year's HZB Technology Transfer Prize goes to Dr. Kári Sveinbjörnsson and Bor Li for developing tandem solar cells in cooperation with a leading PV manufacturer. © S. Zerbe / HZB

Stark im Technologietransfer: Zehn Teams aus dem HZB bewarben sich um den Technologietransfer-Preis – mit einer beeindruckenden Vielfalt an Projekten.

Stark im Technologietransfer: Zehn Teams aus dem HZB bewarben sich um den Technologietransfer-Preis – mit einer beeindruckenden Vielfalt an Projekten. © S. Zerbe / HZB

Tandem solar cells achieve high efficiencies: by combining two different types of solar cells, more sunlight is converted into electricity. PV manufacturer Qcells and a HZB team led by Dr. Kári Sveinbjörnsson and Bor Li have developed the technology to an extent, that Qcells invested in setting up a pilot line for the development of tandem cells in Saxony-Anhalt. For this successful transfer into industrial application, both researchers received the Technology Transfer Prize of the Helmholtz-Zentrum Berlin worth 5,000 euros, on 4. October 2023.

Tandem solar cells consist of a silicon solar cell (bottom cell) and a perovskite solar cell (top cell). The team from the HZB used a commercially produced silicon cell from the company Qcells. Since these are already available on the market, it is more attractive for PV manufacturers to invest in the innovative tandem technology and develop it further for mass production.

The cooperation with manufacturer Qcells has existed since 2018. As part of several projects, a pilot line for perovskite tandem solar cells was developed at HZB, which specifically targets the upscaling of perovskite silicon tandem solar cells. The development of tandem technology on a pilot line at Qcells in Thalheim, Germany, is being funded as part of a European funding project in which HZB is involved as a project partner. “Our collaboration has not only led to demonstrable results, but has also attracted the attention of key players in the PV industry,” says Kári Sveinbjörnsson. “We are very happy about the recognition, as there were a lot of good technology transfer projects in the running,” adds Bor Li.

The award jury, consisting of members of the HZB Industry Advisory Board, justified their decision by saying that the project demonstrates very well how technology transfer can bring research results into application more quickly. They were convinced by the fact that the project had already led to significant investments on both sides.

A total of ten competition entries were submitted by research teams from HZB to this year’s Technology Transfer Prize, demonstrating HZB’s innovative strength in a broad range of applications. Second place went to a team led by Dr. Gert Weber. It developed dyes from cyanobacteria that can be safely used in food, for example. A team led by Dr. Thomas Dittrich received third prize for a newly developed spectrometer that is suitable for photoelectric characterisation of solar cells and high-performance electronics in a wide wavelength range, thus closing a gap in the market. At the award ceremony, the jury was very impressed by the variety of the proposals. This confirmed HZB’s image as a technological think tank.

sz

  • Copy link

You might also be interested in

  • Scrolls from Buddhist shrine virtually unrolled at BESSY II
    Science Highlight
    23.07.2025
    Scrolls from Buddhist shrine virtually unrolled at BESSY II
    The Mongolian collection of the Ethnological Museum of the National Museums in Berlin contains a unique Gungervaa shrine. Among the objects found inside were three tiny scrolls, wrapped in silk. Using 3D X-ray tomography, a team at HZB was able to create a digital copy of one of the scrolls. Using a mathematical method the scroll could be virtually unrolled to reveal the scripture on the strip. This method is also used in battery research.
  • Long-term test shows: Efficiency of perovskite cells varies with the season
    Science Highlight
    21.07.2025
    Long-term test shows: Efficiency of perovskite cells varies with the season
    Scientists at HZB run a long-term experiment on the roof of a building at the Adlershof campus. They expose a wide variety of solar cells to the weather conditions, recording their performance over a period of years. These include perovskite solar cells, a new photovoltaic material offering high efficiency and low manufacturing costs. Dr Carolin Ulbrich and Dr Mark Khenkin evaluated four years of data and presented their findings in Advanced Energy Materials. This is the longest series of measurements on perovskite cells in outdoor use to date. The scientists found that standard perovskite solar cells perform very well during the summer months, even over several years, but decline in efficiency during the darker months.
  • Sodium-ion batteries: New storage mechanism for cathode materials
    Science Highlight
    18.07.2025
    Sodium-ion batteries: New storage mechanism for cathode materials
    Li-ion and Na-ion batteries operate through a process called intercalation, where ions are stored and exchanged between two chemically different electrodes. In contrast, co-intercalation, a process in which both ions and solvent molecules are stored simultaneously, has traditionally been considered undesirable due to its tendency to cause rapid battery failure. Against this traditional view, an international research team led by Philipp Adelhelm has now demonstrated that co-intercalation can be a reversible and fast process for cathode materials in Na-ion batteries. The approach of jointly storing ions and solvents in cathode materials provides a new handle for designing batteries with high efficiency and fast charging capabilities. The results are published in Nature Materials.