Diamond materials as solar-powered electrodes – spectroscopy shows what’s important

Hier sind vier Diamantmaterialien zu sehen: "Diamantschwarz" aus polykristallinem nanostrukturierten Kohlenstoff (oben rechts), das gleiche Material vor der Nanostrukturierung (oben links), ein Einkristall (unten links) und ein mit Bor dotierter Einkristall (unten rechts).

Hier sind vier Diamantmaterialien zu sehen: "Diamantschwarz" aus polykristallinem nanostrukturierten Kohlenstoff (oben rechts), das gleiche Material vor der Nanostrukturierung (oben links), ein Einkristall (unten links) und ein mit Bor dotierter Einkristall (unten rechts). © A. Chemin/HZB

It sounds like magic: photoelectrodes could convert the greenhouse gas CO₂ back into methanol or N2 molecules into valuable fertiliser – using only the energy of sunlight. An HZB study has now shown that diamond materials are in principle suitable for such photoelectrodes. By combining X-ray spectroscopic techniques at BESSY II with other measurement methods, Tristan Petit’s team has succeeded for the first time in precisely tracking which processes are excited by light as well as the crucial role of the surface of the diamond materials.

At first glance, lab-grown diamond materials have little in common with their namesakes in the jewellery shop. They are often opaque, dark and look not spectacular at all. But even if their looks are unimpressive, they are promising in many different applications, for example in brain implants, quantum sensors and computers, as well as metal-free photoelectrode in photo-electrochemical energy conversion. They are fully sustainable and made of carbon only, they degrade little in time compared to metal-based photoelectrodes and they can be industrially produced!

Diamond materials are suitable as metal-free photoelectrodes because when excited by light, they can release electrons in water and trigger chemical reactions that are difficult to initiate otherwise. A concrete example is the reduction of CO2 to methanol which turns the greenhouse gas into a valuable fuel. It would also be exciting to use diamond materials to convert N2 into nitrogen fertiliser NH3, using much less energy than the Haber-Bosch process.

However, diamond electrodes oxidize in water and oxidized surfaces, it was assumed, no longer emit electrons into the water. In addition, the bandgap of diamond is in the UV range (at 5.5 eV), so visible light is unlikely to be sufficient to excite electrons. In spite of this expectation, previous studies have shown puzzling emission of electrons from visible light excitation. A new study by Dr. Tristan Petit’s group at HZB now brings new insights and gives cause for hope.

Dr Arsène Chemin, a postdoctoral researcher in Petit’s team, studied samples of diamond materials produced at the Fraunhofer Institute for Applied Solid State Physics in Freiburg. The samples were engineered to facilitate the CO2 reduction reaction: doped with boron to insure good electrical conductivity and nanostructured, which gives them huge surfaces to increase the emission of charge carriers such as electrons.

Chemin used four X-ray spectroscopic methods at BESSY II to characterize the surface of the sample and the energy needed to excite specific electronic surface states. Then, he used the surface photovoltage measured in a specialised laboratory at HZB to determine which ones of these states are excited and how the charge carriers are displaced in the samples. In complement, he measured the photoemission of electrons of samples either in air or in liquid. By combining these results, he was able for the first time to draw a comprehensive picture of the processes that take place on the surfaces of the sample after excitation by light.

“Surprisingly, we found almost no difference in the photoemission of charges in liquid, regardless of whether the samples were oxidized or not,” says Chemin. This shows that diamond materials are well suited for use in aqueous solutions. Excitation with visible light is also possible: in the case of the boron-doped samples, violet light (3.5 eV) is sufficient to excite the electrons.

“These results are a great cause for optimism,” says Chemin: “With diamond materials we have a new class of materials that can be explored and widely used.” What’s more, also the methodology of this study is interesting: The combination of these different spectroscopic methods could also lead to new breakthroughs in other photoactive semiconductor materials, the physicist points out.

arö

  • Copy link

You might also be interested in

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.