BESSY II: Experimental verification of an exotic quantum phase in Au2Pb

The figure shows the measured energy-momentum relationship for Au<sub>2</sub>Pb. The linear behavior is evidence for a Dirac semimetal. In addition, a Lifshitz transition is observed: At temperatures 223 K and below, the electrons behave like positively charged particles, whereas at room temperature they behave like negatively charged ones.&nbsp;

The figure shows the measured energy-momentum relationship for Au2Pb. The linear behavior is evidence for a Dirac semimetal. In addition, a Lifshitz transition is observed: At temperatures 223 K and below, the electrons behave like positively charged particles, whereas at room temperature they behave like negatively charged ones.  © HZB

A team of HZB has investigated the electronic structure of  Au2Pb at BESSY II by angle-resolved photoemission spectroscopy across a wide temperature range: The results are in accordance with the electronic structure of a three-dimensional topological Dirac semimetal, in agreement with theoretical calculations.

The experimental data unveil some very special features linked to a Lifshitz transition. The study broadens the range of currently known materials exhibiting three-dimensional Dirac phases, and the observed Lifshitz transition demonstrates a viable mechanism to switch the charge carrier type in electric transport without the need for external doping. Moreover, the material becomes interesting as candidate for the realization of a topological superconductor.

The study which includes theory from San Sebastian and synthesis from Princeton was highlighted as Editor's Suggestion in the journal Physical Review Letters.

red.


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.