Fractons as information storage: Not yet quite tangible, but close

Numerical modelling results in a fraction-signature with typical pinch points (left) and should be observable experimentally with neutron scattering. Allowing quantum fluctuations blurs this signature (right), even at T=0 K.

Numerical modelling results in a fraction-signature with typical pinch points (left) and should be observable experimentally with neutron scattering. Allowing quantum fluctuations blurs this signature (right), even at T=0 K. © HZB

A new quasiparticle with interesting properties has appeared in solid-state physics - but so far only in the theoretical modelling of solids with certain magnetic properties. An international team from HZB and Freie Universität Berlin has now shown that, contrary to expectations, quantum fluctuations do not make the quasiparticle appear more clearly, but rather blur its signature.

 

Excitations in solids can also be represented mathematically as quasiparticles; for example, lattice vibrations that increase with temperature can be well described as phonons. Mathematically, also quasiparticles can be described that have never been observed in a material before. If such "theoretical" quasiparticles have interesting talents, then it is worth taking a closer look. Take fractons, for example.

Perfect storage of information

Fractons are fractions of spin excitations and are not allowed to possess kinetic energy. As a consequence, they are completely stationary and immobile. This makes fractons new candidates for perfectly secure information storage. Especially since they can be moved under special conditions, namely piggyback on another quasiparticle. "Fractons have emerged from a mathematical extension of quantum electrodynamics, in which electric fields are treated not as vectors but as tensors - completely detached from real materials," explains Prof. Dr. Johannes Reuther, theoretical physicist at the Freie Universität Berlin and at HZB.

Simple models

In order to be able to observe fractons experimentally in the future, it is necessary to find model systems that are as simple as possible: Therefore, octahedral crystal structures with antiferromagnetically interacting corner atoms were modelled first. This revealed special patterns with characteristic pinch points in the spin correlations, which in principle can also be detected experimentally in a real material with neutron experiments. "In previous work, however, the spins were treated like classical vectors, without taking quantum fluctuations into account," says Reuther.

Including quantum fluctuations

This is why Reuther, together with Yasir Iqbal from the Indian Institute of Technology in Chennai, India, and his doctoral student Nils Niggemann, has now included quantum fluctuations in the calculation of this octahedral solid-state system for the first time. These are very complex numerical calculations, that in principle are able to map fractons. "The result surprised us, because we actually see that quantum fluctuations do not enhance the visibility of fractons, but on the contrary, completely blur them, even at absolute zero temperature," says Niggemann.

In the next step, the three theoretical physicists want to develop a model in which quantum fluctuations can be regulated up or down. A kind of intermediate world between classical solid-state physics and the previous simulations, in which the extended quantum electrodynamic theory with its fractons can be studied in more detail.

From theory to experiment

No material is yet known to exhibit fractons. But if the next model gives more precise indications of what the crystal structure and magnetic interactions should be like, then experimental physicists could start designing and measuring such materials. "I do not see an application of these findings in the next few years, but perhaps in the coming decades and then it would be the famous quantum leap, with really new properties," says Reuther.

Antonia Rötger

  • Copy link

You might also be interested in

  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.
  • An elegant method for the detection of single spins using photovoltage
    Science Highlight
    14.04.2025
    An elegant method for the detection of single spins using photovoltage
    Diamonds with certain optically active defects can be used as highly sensitive sensors or qubits for quantum computers, where the quantum information is stored in the electron spin state of these colour centres. However, the spin states have to be read out optically, which is often experimentally complex. Now, a team at HZB has developed an elegant method using a photo voltage to detect the individual and local spin states of these defects. This could lead to a much more compact design of quantum sensors.
  • Solar cells on moon glass for a future base on the moon
    Science Highlight
    07.04.2025
    Solar cells on moon glass for a future base on the moon
    Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.