Tomography shows high potential of copper sulphide solid-state batteries

3D reconstruction of the formation of a copper crystallite in a copper sulfide particle (CuS) during the discharge of a lithium CuS solid-state battery. The volume expansion can lead to the formation of cracks (blue).

3D reconstruction of the formation of a copper crystallite in a copper sulfide particle (CuS) during the discharge of a lithium CuS solid-state battery. The volume expansion can lead to the formation of cracks (blue). © K. Dong / HZB

Solid-state batteries enable even higher energy densities than lithium-ion batteries with high safety. A team led by Prof. Philipp Adelhelm and Dr. Ingo Manke succeeded in observing a solid-state battery during charging and discharging and creating high-resolution 3D images. This showed that cracking can be effectively reduced through higher pressure.

Solid-state batteries (SSBs) are currently regarded as a promising battery technology of the future. Compared to the current lithium-ion batteries, which are used in mobile phones, laptops and electric vehicles, SSBs could achieve even higher energy densities and better safety. In addition to research institutes, all major automotive companies are therefore also researching this technology.  The main feature of the technology is that the highly flammable liquid electrolytes of lithium-ion batteries are replaced by a solid. The entire battery is therefore consists of only "solid materials", hence the name solid-state battery. In order to produce such a battery, different materials (anode, cathode and electrolyte) must be pressed together under high pressure.

Researchers from the Helmholtz-Zentrum Berlin and Hereon, Humboldt-Universität zu Berlin and the Federal Institute for Materials Research and Testing have now succeeded in observing the processes within such a solid-state battery during charging and discharging. The team led by Prof. Philipp Adelhelm and Dr. Ingo Manke investigated the behavior of copper sulfide, a naturally occurring mineral, as a cathode in a solid-state battery. Lithium was used as anode. A special feature of the battery is that large copper crystallites form during discharge. The formation of large crystallites enables a detailed investigation of the reaction by means of X-ray tomography. Thus, the (dis)charge reaction could be traced in 3D and for the first time the movement of the cathode particles within the battery could be tracked. In addition, it was shown that cracking can be effectively reduced by higher pressure.  "For the complex measurements, we had to make some compromises and carry out many reference experiments," explains Dr. Zhenggang Zhang and Dr. Kang Dong, the joint first authors of the publication. "However, the results provide detailed insights into the inner workings of a solid-state battery and show how its properties can be improved."

Note:

The project was funded by the German Federal Ministry of Education and Research (NASEBER and KAROFEST projects) and the China Scholarship Council. At Helmholtz-Zentrum Berlin, research into solid-state batteries using tomography will soon be further expanded. For example, the Federal Ministry of Education and Research is funding the construction of a new tomography laboratory (TomoFestBattLab) with 1.86 million euros.

P. Adelhelm/I. Manke

  • Copy link

You might also be interested in

  • Photovoltaic living lab reaches the 100 Megawatt-hour mark
    News
    27.09.2024
    Photovoltaic living lab reaches the 100 Megawatt-hour mark
    About three years ago, the living laboratory at HZB went into operation. Since then, the photovoltaic facade has been generating electricity from sunlight. On September 27, 2024, it reached the milestone of 100 megawatt-hours.

  • Alternating currents for alternative computing with magnets
    Science Highlight
    26.09.2024
    Alternating currents for alternative computing with magnets
    A new study conducted at the University of Vienna, the Max Planck Institute for Intelligent Systems in Stuttgart, and the Helmholtz Centers in Berlin and Dresden takes an important step in the challenge to miniaturize computing devices and to make them more energy-efficient. The work published in the renowned scientific journal Science Advances opens up new possibilities for creating reprogrammable magnonic circuits by exciting spin waves by alternating currents and redirecting these waves on demand. The experiments were carried out at the Maxymus beamline at BESSY II.
  • BESSY II: Heterostructures for Spintronics
    Science Highlight
    20.09.2024
    BESSY II: Heterostructures for Spintronics
    Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.