Tomographie zeigt hohes Potenzial von Kupfersulfid-Feststoffbatterien

3D Rekonstruktion der Bildung eines Kupferkristallits in einem Kupfersulfidpartikel (CuS) während der Entladung einer Lithium-CuS-Feststoffbatterie. Die Volumenausdehnung kann dabei zur Bildung von Rissen (blau) führen.

3D Rekonstruktion der Bildung eines Kupferkristallits in einem Kupfersulfidpartikel (CuS) während der Entladung einer Lithium-CuS-Feststoffbatterie. Die Volumenausdehnung kann dabei zur Bildung von Rissen (blau) führen. © K. Dong / HZB

Feststoffbatterien ermöglichen noch höhere Energiedichten als Lithium-Ionenbatterien bei hoher Sicherheit. Einem Team um Prof. Philipp Adelhelm und Dr. Ingo Manke ist es gelungen, eine Feststoffbatterie während des Ladens und Entladens zu beobachten und hochaufgelöste 3D-Bilder zu erstellen. Dabei zeigte sich, dass sich Rissbildung durch höheren Druck effektiv verringern lässt.

 

Feststoffbatterien (solid-state batteries, SSBs) gelten als aussichtsreiche Batterietechnologie der Zukunft. Gegenüber den aktuellen Lithiumionenbatterien, die in Mobiltelefonen, Laptops und Elektrofahrzeugen eingesetzt werden, versprechen SSBs noch höhere Energiedichten und vor allem auch eine bessere Sicherheit. Denn die leicht brennbaren, flüssigen Elektrolyte von Lithiumionenbatterien werden hier durch einen Feststoff ersetzt, so dass die gesamte Batterie nur aus „festen Materialien“ besteht. Um eine solche Batterie herzustellen, müssen Anode, Kathode und Elektrolyt unter hohem Druck miteinander verpresst werden.

Einer Gruppe aus den Helmholtz-Zentren Berlin (HZB) und Hereon, der Humboldt-Universität zu Berlin und der Bundesanstalt für Materialforschung und -prüfung ist es nun gelungen, die Prozesse innerhalb einer solchen Feststoffbatterie während des Ladens und Entladens zu beobachten. Die Arbeitsgruppen von Prof. Philipp Adelhelm und Dr. Ingo Manke untersuchten das Verhalten von Kupfersulfid, einem natürlich vorkommenden Mineral, als Kathode in einer Feststoffbatterie. Als Anode wurde Lithium eingesetzt. Eine Besonderheit der Batterie ist, dass sich während der Entladung große Kupferkristallite bilden. Mit Hilfe von Röntgentomographie ließ sich diese Bildung der Kristallite eingehend untersuchen. So konnte die Entlade- und Ladereaktion in 3D nachvollzogen und zum ersten Mal die Bewegung der Kathodenpartikel innerhalb der Batterie verfolgt werden. Zudem zeigte sich, dass sich Rissbildung durch höheren Druck effektiv verringern lässt. „Für die aufwendigen Messungen mussten wir einige Kompromisse eingehen und viele Referenzexperimente durchführen“ erklären Dr. Zhenggang Zhang und Dr. Kang Dong, die gemeinsamen Erstautoren der Publikation. „Die Ergebnisse geben aber detaillierte Einblicke in das Innenleben einer Feststoffbatterie und zeigen, wie sich deren Eigenschaften verbessern lassen“.

Hinweis:

Das Projekt wurde gefördert durch Mittel des Bundesministeriums für Bildung und Forschung (Projekte NASEBER und KAROFEST) und des China Scholarship Council. Am Helmholtz-Zentrum Berlin wird die Erforschung von Feststoffbatterien mittels Tomographie demnächst noch weiter ausgebaut. So fördert das Bundesministerium für Bildung und Forschung den Aufbau eines neuen Tomographielabors (TomoFestBattLab) mit 1,86 Millionen Euro.

P. Adelhelm/I. Manke

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues HZB-Magazin „Lichtblick“ ist erschienen
    Nachricht
    18.09.2025
    Neues HZB-Magazin „Lichtblick“ ist erschienen
    In der neuen Ausgabe stellen wir unsere neue kaufmännische Geschäftsführerin vor. Wir zeigen aber auch, wie wichtig uns der Austausch ist: Die Wissenschaft lebt ohnehin vom fruchtbaren Austausch. Uns ist aber auch der Dialog mit der Öffentlichkeit sehr wichtig. Und ebenso kann Kunst einen bereichernden Zugang zur Wissenschaft schaffen und Brücken bauen. Um all diese Themen geht es in der neuen Ausgabe der Lichtblick.
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.