Tandem solar cells with perovskite: nanostructures help in many ways

Scanning electron microscopy of perovskite silicon tandem cells in cross-section with nanotexture and back-reflector layer (golden). 

Scanning electron microscopy of perovskite silicon tandem cells in cross-section with nanotexture and back-reflector layer (golden).  © P. Tockhorn/HZB

By the end of 2021, teams at HZB had presented perovskite silicon tandem solar cells with an efficiency close to 30 percent. This value was a world record for eight months, a long time for this hotly contested field of research. In the renowned journal Nature Nanotechnology, the scientists describe how they achieved this record value with nanooptical structuring and reflective coatings.

 

Tandem solar cells made of perovskite and silicon enable significantly higher efficiencies than silicon solar cells alone. Tandem cells from HZB have already achieved several world records. Most recently, in November 2021, HZB research teams achieved a certified efficiency of 29.8 % with a tandem cell made of perovskite and silicon. This was an absolute world record that stood unbeaten at the top for eight months. It was not until the summer of 2022 that a Swiss team at EPFL succeeded in surpassing this value.

Joined forces

Three HZB teams had worked closely together for the record-breaking tandem cell. Now they present the details in Nature Nanotechnology. The journal also invited them to write a research briefing, in which they summarise their work and give an outlook on future developments.

Textures improves the performance

"Our competences complement each other very well," says Prof. Dr. Christiane Becker, who developed the world record cell with the team led by Dr. Bernd Stannowski (silicon bottom cell) and Prof. Dr. Steve Albrecht (perovskite top cell). Becker's team introduced a nanooptical structure into the tandem cell: a gently corrugated nanotexture on the silicon surface. "Most surprising, this texture brings several advantages at once: it reduces reflection losses and ensures a more regular perovskite film formation," says Becker. In addition, a dielectric buffer layer on the back of the silicon reduces parasitic absorption at near-infrared wavelengths.

As a conclusion, the researchers hold: customised nanotextures can help to improve perowskite semiconductor materials on diverse levels. These results are not only valuable for tandem solar cells made of perovskite and silicon, but also for perovskite-based light-emitting diodes.

 

 

arö

  • Copy link

You might also be interested in

  • Two Humboldt-Fellows join HZB
    News
    09.12.2024
    Two Humboldt-Fellows join HZB
    In 2024, two young scientists joined HZB as Humboldt Fellows. Kazuki Morita joined Prof. Antonio Abate's group and brings his expertise in modelling and data analysis to solar energy research. Qingping Wu is an expert in battery research and works with Prof. Yan Lu on high energy density lithium metal batteries.
  • Less is more: Why an economical Iridium catalyst works so well
    Science Highlight
    05.12.2024
    Less is more: Why an economical Iridium catalyst works so well
    Iridium-based catalysts are needed to produce hydrogen using water electrolysis. Now, a team at HZB has shown that the newly developed P2X catalyst, which requires only a quarter of the Iridium, is as efficient and stable over time as the best commercial catalyst. Measurements at BESSY II have now revealed how the special chemical environment in the P2X catalyst during electrolysis promotes the oxygen evolution reaction during water splitting.
  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.