Dynamics in one-dimensional spin chains newly elucidated

The data from neutron scattering (left) provide information about absorbed energies in reciprocal space. With the new evaluation, it has been possible to obtain statements about new magnetic states and their temporal development in real space (right). The colours blue and red indicate the two opposite spin directions.

The data from neutron scattering (left) provide information about absorbed energies in reciprocal space. With the new evaluation, it has been possible to obtain statements about new magnetic states and their temporal development in real space (right). The colours blue and red indicate the two opposite spin directions. © HZB

Neutron scattering is considered the method of choice for investigating magnetic structures and excitations in quantum materials. Now, for the first time, the evaluation of measurement data from the 2000s with new methods has provided much deeper insights into a model system – the 1D Heisenberg spin chains. A new toolbox is available for elucidating future quantum materials has been achieved.

Potassium copper fluoride KCuF3 is considered the simplest model material realising the so-called Heisenberg quantum spin chain: The spins interact with their neighbours antiferromagnetically along a single direction (one-dimensional), governed by the laws of quantum physics.

"We carried out the measurements on this simple model material at the ISIS spallation neutron source some time ago when I was a postdoc, and we  published our results in 2005, 2013 and again in 2021 comparing to new theories each time they became available," says Prof. Bella Lake, who heads the HZB-Institute Quantum Phenomena in Novel Materials. Now with new and extended methods, a team led by Prof. Alan Tennant and Dr Allen Scheie have succeeded to gain significantly deeper insights into the interactions between the spins and their spatial and temporal evolution.

Dynamics like a wake

"With neutron scattering, you sort of nudge a spin so that it flips. This creates a dynamic, like a wake when a ship is sailing through water, which can affect its neighbours and their neighbours," Tennant explains.

”Neutron scattering data is measured as a function of energy and wavevector” says Scheie “ Our breakthrough was to map the spatial and temporal development of the spins using mathematical methods such as a back-Fourier transformation.” Combined with other theoretical methods, the physicists gathered information about interactions between the spin states and their duration and range, as well as insights into the so-called quantum coherence.

New tool box

The work demonstrates a new tool box for the analysis of neutron scattering data and might foster a deeper understanding of quantum materials that are relevant for technological use.

arö

  • Copy link

You might also be interested in

  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 20 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.