Rhombohedral graphite as a model for quantum magnetism

Rhombohedral graphite (right) consists of staggered graphene layers.

Rhombohedral graphite (right) consists of staggered graphene layers. © 10.1126/sciadv.abo6879

<p class="Default">The surface state of RG is visualized as red spheres centered on the carbon atoms in the top graphene layer. The size of the spheres is proportional to the density of electrons on the carbon atoms. It can also be called a 2D electron system.

The surface state of RG is visualized as red spheres centered on the carbon atoms in the top graphene layer. The size of the spheres is proportional to the density of electrons on the carbon atoms. It can also be called a 2D electron system.

Graphene is an extremely exciting material. Now a graphene variant shows another talent: rhombohedral graphite made of several layers slightly offset from each other could enlighten the hidden physics in quantum magnets.

Graphene materials are made of carbon atoms only, the basic shape is a honeycomb structure. But there are many variants with amazingly versatile properties. For example, stacks of graphene layers* can host a wide variety of quasiparticles and many-body phenomena: From Dirac fermions in single layers to exotic superconductivity in twisted double layers.

A stack of Honeycombs

In rhombohedral graphite (RG), the honeycomb layers are stacked on top of each other, with a specific shift or offset. This leads to a special electronic structure with very flat bands on the surface. Like in a topological insulator, charge carriers move freely at the surface only. Last year, it was shown that trilayers of RG also harbour ferromagnetism and unconventional superconductivity. And: The strength of the interactions increases with the number of layers.

Combination of experimental and theoretical results

A team from the Centre of Energy Research (Topology in Nanostructures, Momentum research group), Budapest, Hungary and at HZB has now examined the surface of multilayer RG samples under a scanning tunnelling microscope for the first time. They could precisely map the band structure and electronic properties and discovered unexpectedly rich many-body ground states. They also worked on various models of quantum physics in order to understand hidden processes and interactions in the samples. 

Link between graphene-systems and quantum magnets

"The interesting thing about rhombohedral graphite is that this material also has so-called spin edge states, which occur in quantum magnets. The work thus connects two major areas of condensed matter: graphene-based systems and quantum magnets," says Dr Imre Hagymási, first author of the paper, which has now appeared in Science Advances.

Rhombohedrical graphene as a tunable platform

The study offers new insights into the interplay between topology and many-body physics and thus the chance to shed light on the physics in quantum magnets. At present, even simple quantum magnets are not fully understood. Yet quantum magnets also play a role in highly topical issues such as high-temperature cuprate superconductors. RG offers an alternative platform for the study of such correlated phenomena. A platform that is tunable by electric fields, strain, etc. and has a very simple crystal structure compared to other correlated materials. "These results are really helpful for the whole research field," says Hagymási.

*Note: Graphene is strictly one layer whereas the arrangement of graphene layers can be called graphite.

arö


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • From waste to value: The right electrolytes can enhance glycerol oxidation
    Science Highlight
    01.07.2024
    From waste to value: The right electrolytes can enhance glycerol oxidation
    When biomass is converted into biodiesel, huge amounts of glycerol are produced as a by-product. So far, however, this by-product has been little utilised, even though it could be processed into more valuable chemicals through oxidation in photoelectrochemical reactors. The reason for this: low efficiency and selectivity. A team led by Dr Marco Favaro from the Institute for Solar Fuels at HZB has now investigated the influence of electrolytes on the efficiency of the glycerol oxidation reaction. The results can help to develop more efficient and environmentally friendly production processes.