Professorship at the University of Augsburg for Felix Büttner

Prof. Dr. Felix Büttner has been called at the University Augsburg. He heads now a joint research group at HZB.

Prof. Dr. Felix Büttner has been called at the University Augsburg. He heads now a joint research group at HZB. © Uni Augsburg

Felix Büttner has led a junior research group at HZB. Now he has accepted a call to the University of Augsburg. As head of a joint research group, he will continue his studies of magnetic skyrmions at BESSY II.

 

Felix Büttner has been leading a junior research group at HZB since the beginning of 2020, funded by the Young Investigator Grant of the Helmholtz Association. In spring 2022, he was awarded the Walter Schottky Prize of the German Physical Society for his pioneering achievements in the field of magnetic skyrmions. Since July, he holds a professorship at the Institute of Physics, University Augsburg.

Felix Büttner studied in Göttingen and received his doctorate in 2013 for his work at the interface of magnetism and X-ray physics. After a stint in industry at Daimler AG, he worked as a postdoctoral researcher at the Massachusetts Institute of Technology from 2015-2020.

Prof. Dr. Büttner investigates nanotextures in magnetic thin-film materials and drives the development of ultrahigh-resolution X-ray microscopy techniques. The aim is to understand the particle-like dynamics of such topological textures and to prepare their application in information technology.

Under a cooperation agreement between the University of Augsburg and HZB, Büttner will work one day a week at HZB, where he runs laboratories in Wannsee and carries out measurements at BESSY II. His research group will remain in full size.

red./arö

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.
  • Solar cells on moon glass for a future base on the moon
    Science Highlight
    07.04.2025
    Solar cells on moon glass for a future base on the moon
    Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.