Thermal insulation for quantum technologies

Electron microscope image of a silicon sample with nanocrystallites of different orientation (coloured), pores (black) and the pore network recognised by the image processing software (white grid lines).

Electron microscope image of a silicon sample with nanocrystallites of different orientation (coloured), pores (black) and the pore network recognised by the image processing software (white grid lines). © D. Kojda / HZB

New energy-efficient IT components often only operate stably at extremely low temperatures. Therefore, very good thermal insulation of such elements is crucial, which requires the development of materials with extremely low thermal conductivity. A team at HZB has now used a novel sintering process to produce nanoporous silicon aluminium samples in which pores and nanocrystallites impede the transport of heat and thus drastically reduce thermal conductivity. The researchers have developed a model for predicting the thermal conductivity, which was confirmed using experimental data on the microstructure of the samples and their thermal conductivity. Thus, for the first time, a method is available for the targeted development of complex porous materials with ultra-low thermal conductivity.

 

Thermal insulation is not only important for buildings, but also in quantum technologies. While insulation panels around a house keep the heat inside, quantum devices require insulation against heat from the outside world, as many quantum effects are only stable at low temperatures. What is needed are materials with extremely low thermal conductivity that are also compatible with the materials used in quantum technology.

Novel sintering process

A team led by Dr Klaus Habicht from HZB has now taken a big step forward in this direction. Using a novel sintering process, they produced samples of silicon and silicon aluminium that were compacted under pressure and an electric field for a few minutes at high temperature. Before that, further microstructures were added to the Si starting material using electrochemical etching processes, which further suppress heat transport. "Silicon is the ideal material here for many reasons, in particular it fits possible devices based on silicon qubits," Habicht points out.

Obstacles for phonon transport

This gave them a number of material samples with tiny pores, crystalline nanoparticles and so-called domain boundaries. Heat conduction works via vibrations of the crystal lattice, so called phonons. However, these phonons can only propagate if they do not encounter obstacles on which they are scattered. Pores as well as nanoparticles and domain boundaries with suitable distances and diameters can become such scattering centres and thus reduce heat conduction.

Separating the contributions

Using an elegant model, the scientists calculated the behaviour of the phonons and thus the thermal conductivity in different samples. Their microstructure was incorporated with parameters such as the size and spacing of pores and nanoparticles. "With this model, we can clearly separate the contributions of nanoparticles and pores to thermal conductivity," Habicht explains.

Microstructures evaluated in detail

The experimental results on microstructures and thermal conductivity in the individual samples confirm the new model. First author Danny Kojda determined the microstructures at the HZB's scanning electron microscope. Using special image analysis software, developed by Kojda for this purpose, he determined the size and number of nanoparticles and pores, as well as their spacing. The thermal conductivity as a function of temperature was carefully measured in all samples. The measured data matched the modelled results extremely well. This means that it is now possible to determine whether, in a sample with a given microstructure, it is mainly the pores or rather the nanocrystallites that are responsible for the suppression of heat conduction.

Materials design

"Understanding the basic transport processes helps us to produce and further develop customised materials with strongly reduced thermal conductivity in a targeted manner," says Kojda.

arö

  • Copy link

You might also be interested in

  • Langbeinites show talents as 3D quantum spin liquids
    Science Highlight
    23.08.2024
    Langbeinites show talents as 3D quantum spin liquids
    A 3D quantum spin liquid has been discovered in the vicinity of a member of the langbeinite family. The material's specific crystalline structure and the resulting magnetic interactions induce an unusual behaviour that can be traced back to an island of liquidity. An international team has made this discovery with experiments at the ISIS neutron source and theoretical modelling on a nickel-langbeinite sample.
  • Green hydrogen: ‘Artificial leaf’ becomes better under pressure
    Science Highlight
    31.07.2024
    Green hydrogen: ‘Artificial leaf’ becomes better under pressure
    Hydrogen can be produced via the electrolytic splitting of water. One option here is the use of photoelectrodes that convert sunlight into voltage for electrolysis in so called photoelectrochemical cells (PEC cells). A research team at HZB has now shown that the efficiency of PEC cells can be significantly increased under pressure.
  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.