Wärmedämmung für Quantentechnologien

Elektronenmikroskopische Aufnahme einer Silizium-Probe mit Nanokristalliten unterschiedlicher Orientierung (farbig), Poren (schwarz) und dem von der Bildbearbeitungssoftware erkannten Porennetzwerk (weiße Gitterlinien).

Elektronenmikroskopische Aufnahme einer Silizium-Probe mit Nanokristalliten unterschiedlicher Orientierung (farbig), Poren (schwarz) und dem von der Bildbearbeitungssoftware erkannten Porennetzwerk (weiße Gitterlinien). © D. Kojda / HZB

Neue energieeffiziente IT-Bauelemente arbeiten häufig nur bei extrem tiefen Temperaturen stabil. Daher kommt es entscheidend auf eine sehr gute Wärmeisolierung solcher Elemente an, was die Entwicklung von Materialien mit extrem niedriger Wärmeleitfähigkeit erfordert. Ein Team am HZB hat nun mit einem neuartigen Sinterverfahren nanoporöse Silizium-Aluminium-Proben hergestellt, in welchen Poren und Nanokristallite den Transport von Wärme behindern und so die Wärmeleitfähigkeit drastisch reduzieren. Die Forschenden haben ein Modell für die Vorhersage der Wärmeleitfähigkeit entwickelt, das anhand von Messdaten zur Mikrostruktur der Proben und deren Wärmeleitfähigkeit bestätigt wurde. Damit liegt erstmals eine Methode für die gezielte Entwicklung von komplexen porösen Materialien mit ultraniedriger Wärmeleitfähigkeit vor.

 

Wärmedämmung ist nicht nur für Gebäude wichtig, sondern auch in den Quantentechnologien. Während die Dämmplatten um ein Haus die Heizwärme im Haus halten, geht es bei Quantenbauelementen um eine Isolierung gegen die Wärme aus der Außenwelt, da viele Quanteneffekte nur bei tiefer Temperatur stabil sind. Gesucht werden also Materialien mit extrem geringer Wärmeleitfähigkeit, die außerdem kompatibel mit den in der Quantentechnologie genutzten Materialien sind.

Neuartiges Sinterverfahren

Auf diesem Weg ist nun ein Team um Dr. Klaus Habicht aus dem HZB einen großen Schritt vorangekommen. Mit einem neuartigen Sinterverfahren stellten sie Proben aus Silizium und Silizium-Aluminium her, die unter Druck und einem elektrischen Feld für wenige Minuten unter hoher Temperatur verpresst wurden. Davor wurden dem Si-Ausgangsmaterial mittels elektrochemischen Ätzverfahren weitere Mikrostrukturen hinzugefügt, die den Wärmetransport noch weiter unterdrücken. „Silizium ist aus vielen Gründen hier das ideale Material, insbesondere passt es zu möglichen Bauelementen, die auf Silizium Qubits beruhen“, betont Habicht.

Hindernisse für Phononen

So erhielten sie eine Reihe von Materialproben mit winzigen Poren, kristallinen Nanopartikeln und so genannten Domänengrenzen. Wärmeleitung funktioniert über Schwingungen im Kristallgitter. In der Physik spricht man von Phononen. Diese Phononen können sich jedoch nur ausbreiten, wenn sie nicht auf Hindernisse stoßen, an denen sie gestreut werden. Sowohl Poren als auch Nanopartikel und Domänengrenzen können bei passenden Abständen und Durchmessern zu solchen Streuzentren werden und damit die Wärmeleitung reduzieren.

Beiträge von Poren und Nanopartikeln

Mit einem eleganten Modell berechneten die Forschenden das Verhalten der Phononen und damit die Wärmeleitfähigkeit in unterschiedlichen Proben. Deren Mikrostruktur floss mit Parametern wie Größe und Abstand von Poren und Nanopartikeln ein. „Bei diesem Modell können wir die Beiträge von Nanopartikeln und Poren zur Wärmeleitfähigkeit deutlich voneinander trennen“, erklärt Habicht.

Mikrostrukturen im Detail ausgewertet

Die experimentellen Ergebnisse zu Mikrostrukturen und Wärmeleitfähigkeit in den einzelnen Proben bestätigen das neue Modell. Die Mikrostrukturen bestimmte Erstautor Danny Kojda am Rasterelektronenmikroskop des HZB. Mit einer speziellen dafür von ihm weiterentwickelten Bildauswertungssoftware ermittelte er Größe und Anzahl von Nanopartikeln und Poren, sowie deren Abstand. Die Wärmeleitfähigkeit in Abhängigkeit von der Temperatur wurde in allen Proben sorgfältig gemessen. Die Messdaten passten extrem gut zu den modellierten Ergebnissen. Damit lässt sich nunmehr bestimmen, ob in einer Probe mit gegebener Mikrostruktur vor allem die Poren oder doch mehr die Nanokristallite ursächlich für die Unterdrückung der Wärmeleitung sind.

Gezieltes Materialdesign

„Das Verständnis der grundlegenden Transportprozesse hilft uns dabei, maßgeschneiderte Materialien mit stark reduzierter Wärmeleitfähigkeit zielgerichtet herzustellen und weiter zu entwickeln“, sagt Kojda.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    Science Highlight
    23.08.2024
    Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    In der Materialklasse der Langbeinite wurde eine 3D-Quantenspinflüssigkeit entdeckt. Gründe für dieses ungewöhnliche Verhalten liegen in der kristallinen Struktur und den dadurch bedingten besonderen magnetischen Wechselwirkungen. Dies hat nun ein internationales Team durch Experimente an der Neutronenquelle ISIS und theoretische Modellierungen an einer Nickel-Langbeinit-Probe gezeigt.
  • Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Science Highlight
    31.07.2024
    Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Wasserstoff kann in speziellen Anlagen über die elektrolytische Aufspaltung von Wasser erzeugt werden. Dabei ist eine Option die Verwendung von Photoelektroden, die Sonnenlicht in Spannung für die Elektrolyse umwandeln. Nun zeigt ein Forschungsteam am HZB, dass die Effizienz solcher photoelektrochemischen Zellen (PEC-Zellen) unter Druck noch deutlich steigen kann.
  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.