Fermi Arcs in an Antiferromagnet detected at BESSY II

The Fermi surface of antiferromagnetic NdBi taken at 6 K temperature at BESSY II. It shows so called Fermi arcs.

The Fermi surface of antiferromagnetic NdBi taken at 6 K temperature at BESSY II. It shows so called Fermi arcs. © https://www.nature.com/articles/s41586-022-04412-x.

An international cooperation has analysed samples of NdBi crystals which display interesting magnetic properties. In their experiments including measurements at BESSY II they could find evidence for so called Fermi arcs in the antiferromagnetic state of the sample at low temperatures. This observation is not yet explained by existing theoretical ideas and opens up exciting possibilities to make use of these kind of materials for innovative information technologies based on the electron spin rather than the charge.


Neodymium-Bismuth crystals belong to the wide range of materials with interesting magnetic properties. The Fermi surface which is measured in the experiments contains information on the transport properties of charge carriers in the crystal. While usually the Fermi surface consists of closed contours, disconnected sections known as Fermi arcs are very rare and can be signatures of unusual electronic states.

Unusual magnetic splittings

In a study, published now in Nature, the team presents experimental evidence for such Fermi arcs. They observed an unusual magnetic splitting in the antiferromagnetic state of the samples below a temperature of 24 Kelvin (the Néel-temperature). This splitting creates bands of opposing curvature, which changes with temperature together with the antiferromagnetic order.

These findings are very important because they are fundamentally different from previously theoretically considered and experimentally reported cases of magnetic splittings. In the case of well-known Zeeman and Rashba splittings, the curvature of the bands is always preserved. Since both splittings are important for spintronics, these new findings could lead to novel applications, especially as the focus of spintronics research is currently moving from traditional ferromagnetic to antiferromagnetic materials.

arö

  • Copy link

You might also be interested in

  • Green hydrogen: MXene boosts the effectiveness of catalysts
    Science Highlight
    29.05.2025
    Green hydrogen: MXene boosts the effectiveness of catalysts
    MXenes are adept at hosting catalytically active particles. This property can be exploited to create more potent catalyst materials that significantly accelerate and enhance the oxygen evolution reaction, which is one of the bottlenecks in the production of green hydrogen via electrolysis using solar or wind power. A detailed study by an international team led by HZB chemist Michelle Browne shows the potential of these new materials for future large-scale applications. The study is published in Advanced Functional Materials.
  • Joint Berlin Data & AI Center planned
    News
    27.05.2025
    Joint Berlin Data & AI Center planned
    Data-driven research is crucial for tackling societal challenges- whether in health, materials, or climate research. In a collaboration that is so far unique, Berlin University Alliance (BUA), the Max Delbrück Center, and the Helmholtz-Zentrum Berlin, together with the Zuse Institute Berlin, aim to establish a powerful Data and AI Center in the German capital.

  • Industrial Research Fellow at HZB: More time for discussions
    Interview
    12.05.2025
    Industrial Research Fellow at HZB: More time for discussions
    The South African chemist Denzil Moodley is the first Industrial Research Fellow at HZB. He is playing a leading role in the CARE-O-SENE project. The Fellowship program aims to further accelerate the development of an efficient catalyst for a sustainable aviation fuel. An interview about the CARE-O-SENE project and why it is so important for scientists from industry and public research to work together.