Lead-free perovskite solar cells - How fluoride additives improve quality

Fluoride additives increase the quality of the perovskite layer. At BESSY II a team has now explored the chemistry in detail.

Fluoride additives increase the quality of the perovskite layer. At BESSY II a team has now explored the chemistry in detail. © M. Künsting/HZB

Tin halide perovskites are currently considered the best alternative to their lead-containing counterparts, which are, however, still significantly less efficient and stable. Now, a team led by Prof. Antonio Abate from HZB has analysed the chemical processes in the perovskite precursor solution and the fluoride compounds in detail. Using a clever combination of measurement methods at BESSY II and with NMR at the Humboldt-University Berlin, they were able to show that fluoride prevents the oxidation of tin and leads to a more homogeneous film formation with fewer defects, increasing the quality of the semiconductor layer.

Lead halide perovskite solar cells promise very high efficiencies at low manufacturing costs. However, the toxicity of lead poses serious environmental concerns, proving the need for lead-free alternatives. Tin is currently considered the best choice, but faces challenges regarding its oxidation and uncontrolled crystallization that restrains the respective solar cells in their production, performance and stability.

Tin fluoride helps

One of the most common strategies to obtain good quality tin-based perovskite thin-films involves the use of tin fluoride (SnF2) as an additive in the solution-based process. The improved optoelectronic and morphological properties of SnF2-containing films have been thoroughly characterised in literature, although the role of this additive remained underexplored.

Chemical behavior explored

Now, a team led by Prof. Antonio Abate has for the first time elucidated the important chemical role of SnF2 inside the perovskite solution that is responsible for these improvements. The key lies in the chemical behaviour of fluoride anions. Tin easily oxidises from Sn(II) to Sn(IV), generating defects in the semiconductor film. Data from nuclear magnetic resonance (NMR) analyses now showed that the fluoride anion from SnF2 has a strong affinity for Sn(IV) and forms the compound SnF4. Using hard X-ray photoelectron spectroscopy at BESSY II, the team was able to demonstrate that SnF4 shows a lower tendency to be entrapped in the perovskite structure compared to SnI4, resulting in less Sn(IV) content in the film. Finally, small-angle X-ray scattering measurements at BESSY II revealed that the fluoride appears to positively affect the nucleation process in the precursor solution, which improves crystallisation.

More homogenous crystal growth

"To put it simply, fluoride anions trap oxidized Sn(IV) in the solution, as SnF4. The lower affinity of this material to perovskite-like species prevents its inclusion in the perovskite film," says Jorge Pascual, a postdoc from Abate’s group working on tin halide perovskites. "In addition, fluoride improves the colloid stability of tin halide perovskite precursor solutions, precursor subunits creating a more uniformly distributed oriented attachment, resulting in a more homogeneous crystal growth," explains Marion Flatken, who carried out the research as part of her PhD in the same team.

These results come at the right time. Based on this study, it might be possible to explore other promising additives that further improve the properties of lead-free perovskite solar cells.

arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.