Coronavirus SARS-CoV2: BESSY II data accelerate drug development

Schematic representation of the coronavirus protease. The enzyme comes as a dimer consisting of two identical molecules. A part of the dimer is shown in colour (green and purple), the other in grey. The small molecule in yellow binds to the active centre of the protease and could be used as blueprint for an inhibitor.

Schematic representation of the coronavirus protease. The enzyme comes as a dimer consisting of two identical molecules. A part of the dimer is shown in colour (green and purple), the other in grey. The small molecule in yellow binds to the active centre of the protease and could be used as blueprint for an inhibitor. © H. Tabermann/HZB

Filmclip: At BESSY II, the main protease of SARS-CoV2 has been decoded. This might help to develop drugs. © HG Medien/HZB

01:11

A coronavirus is keeping the world in suspense. SARS-CoV-2 is highly infectious and can cause severe pneumonia with respiratory distress (COVID-19). Scientists are doing research in order to prevent the viruses from multiplying. A team from the University of Lübeck and from Helmholtz Centre for Infection Research (HZI) has now found a promising approach. Using the high-intensity X-ray light from the Berlin synchrotron source BESSY II, they have decoded the three-dimensional architecture of the main protease of SARS-CoV-2. This protein is involved in the reproduction of the virus. Analysing its 3D architecture allows the systematic development of drugs which inhibit the reproduction of the virus.

Teams around the world are working hard to develop active substances against SARS-CoV-2. The structural analysis of functional proteins of the virus is very helpful for this goal. The function of a protein is closely related to its 3D architecture. If this 3D architecture is known, it is possible to identify specific points of attack for active substances.

Inhibiting the reproduction

A special protein is involved in the reproduction of the virus: the viral main protease (Mpro or also 3CLpro). A team led by Prof. Dr. Rolf Hilgenfeld, University of Lübeck, has now decoded the 3D architecture of the main protease of SARS-CoV-2. The researchers have used the high-intensity X-ray light from the BESSY II facility of the Helmholtz-Zentrum Berlin.

Fast track at BESSY II

"For such issues of highest relevance, we can offer fast track access to our instruments", says Dr. Manfred Weiss, who heads the Research Group Macromolecular Crystallography (MX) at HZB. At the so-called MX instruments tiny protein crystals can be analysed with highly brilliant X-ray light. The images contain information about the 3D architecture of the protein molecules. The complex shape of the protein molecule and its electron density is then calculated by computer algorithms.

Targets for active substances

The 3D architecture provides concrete starting points for developing active substances or inhibitors. These drugs could dock specifically to target points of the macromolecule and impede its function. Rolf Hilgenfeld is a world-renowned expert in the field of virology and already developed an inhibitor against the SARS-virus during the 2002/2003 SARS pandemic. In 2016, he succeeded in deciphering an enzyme of the Zika virus. 

 

Science, 20. March 2020: Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Linlin Zhang, Daizong Lin, Xinyuanyuan Sun, Ute Curth, Christian Drosten, Lucie Sauerhering, Stephan Becker, Katharina Rox, Rolf Hilgenfeld

DOI: 10.1126/science.abb3405 

arö

  • Copy link

You might also be interested in

  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.
  • Ernst Eckhard Koch Prize and Synchrotron Radiation Innovation Award
    News
    13.12.2024
    Ernst Eckhard Koch Prize and Synchrotron Radiation Innovation Award
    This year, the Friends of Helmholtz-Zentrum Berlin (Freundeskreis des HZB e. V.) awarded the Ernst Eckhard Koch Prize to Dr. Dieter Skroblin of the Technische Universität Berlin for his outstanding doctoral thesis. The European Innovation Award Synchrotron Radiation went to Dr. Manfred Faubel from the Max Planck Institute for Dynamics and Self-Organization in Göttingen and Dr. Bernd Winter from the Fritz Haber Institute in Berlin. The award ceremony took place at this year's HZB user meeting.
  • Modernisation of BESSY II+ light source
    News
    11.12.2024
    Modernisation of BESSY II+ light source
    The focus of the User Meeting 2024: Helmholtz-Zentrum Berlin (HZB) presents the BESSY II+ upgrade programme.  It enables world-class research at BESSY II to be further expanded and new concepts to be tested with regard to the successor source BESSY III.