X-ray microscopy at BESSY II: Nanoparticles can change cells

3D architecture of the cell with different organelles:  mitochondria (green), lysosomes (purple), multivesicular bodies (red), endoplasmic reticulum (cream).

3D architecture of the cell with different organelles:  mitochondria (green), lysosomes (purple), multivesicular bodies (red), endoplasmic reticulum (cream). © Burcu Kepsutlu/HZB

The study shows: After the uptake of nanoparticles into the cell, there are fewer lipid droplets (blue) and multivesicular bodies and instead more mitochondria (green) and endosomes (yellow).

The study shows: After the uptake of nanoparticles into the cell, there are fewer lipid droplets (blue) and multivesicular bodies and instead more mitochondria (green) and endosomes (yellow). © James McNally/HZB

</p> <p>Lipid droplets (blue), containing nanoparticles (orange dots).

Lipid droplets (blue), containing nanoparticles (orange dots). © HZB

Nanoparticles easily enter into cells. New insights about how they are distributed and what they do there are shown for the first time by high-resolution 3D microscopy images from the lightsources BESSY II and ALBA. For example, certain nanoparticles accumulate preferentially in certain organelles of the cell. This can increase the energy costs in the cell. "The cell looks like it has just run a marathon, apparently, the cell requires energy to absorb such nanoparticles" says lead author James McNally.

Today, nanoparticles are not only in cosmetic products, but everywhere, in the air, in water, in the soil and in food. Because they are so tiny, they easily enter into the cells in our body. This is also of interest for medical applications: Nanoparticles coated with active ingredients could be specifically introduced into cells, for example to destroy cancer cells. However, there is still much to be learned about how nanoparticles are distributed in the cells, what they do there, and how these effects depend on their size and coating.

New insights have come from a study at BESSY II, where Prof. Gerd Schneider’s team can take X-ray microscopy images with soft, intensive X-rays. Researchers from the X-ray microscopy group led by HZB biophysicist Dr. James McNally investigated cells with differently coated nanoparticles. The nanoparticles were exactly the same size, but were coated with different active ingredients. Some samples were examined at the MISTRAL beamline at ALBA in Barcelona.

3D image of the cell and its organelles

"X-ray microscopy offers significantly better resolution than light microscopy, and a much better overview than electron microscopy," emphasizes Schneider. For the first time, the team obtained complete, three-dimensional, high-resolution images of the nanoparticle-treated cells with the organelles contained therein: including lipid droplets, mitochondria, multivesicular bodies and endosomes. Lipid droplets act as energy stores in the cell, while mitochondria metabolize this energy.

Accumulation of nanoparticles

The analysis of the images showed: The nanoparticles accumulate preferentially in a subset of the cell organelles and also change the number of certain organelles at the expense of other organelles. The changes in organelle numbers were similar regardless of the nanoparticle coating, suggesting that many different kinds of nanoparticle coatings may induce a similar effect. To evaluate how general this effect is, further studies with other nanoparticle coatings and with other cell types must be performed.

Number of lipid droplets decreases

"X-ray microscopy allows us to see the cell as a whole, so we were able to observe this behavior for the first time," explains McNally. "We found that the absorption of such nanoparticles increases the number of mitochondria and endosomes, while other organelles, namely lipid droplets and multivesicular bodies, decrease," says Burcu Kepsutlu, who carried out the experiments for her doctorate."When we go on a starvation diet or run a marathon, we see similar changes in the cell - namely an increase in mitochondria and a decrease in lipid droplets," says McNally. "Apparently it takes energy for the cell to absorb the nanoparticles, and the cell feels like it has just run a marathon."

ACS Nano (2020): Cells Undergo Major Changes in the Quantity of Cytoplasmic Organelles after Uptake of Gold Nanoparticles with Biologically Relevant Surface Coatings, Burcu Kepsutlu, Virginia Wycisk, Katharina Achazi, Sergey Kapishnikov, Ana Joaquina Pérez-Berná, Peter Guttmann, Antje Cossmer, Eva Pereiro, Helge Ewers, Matthias Ballauff, Gerd Schneider, James G. McNally

DOI: 10.1021/acsnano.9b09264

 

arö

  • Copy link

You might also be interested in

  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.