Perovskite solar cells: International consensus on ageing measurement protocols

© Catalan Institute of Nanoscience and Nanotechnology

Experts from 51 research institutions have now agreed on the procedures for measuring the stability of perovskite solar cells and assessing their quality. The consensus statement was published in Nature Energy and is considered a milestone for the further development of this new type of solar cell on its way to industrial application.

Commercially available solar modules undergo a series of characterisation procedures that analyse their properties and ensure quality. However, these methods cannot simply be transferred to halide perovskite solar cells. Halide perovskites are hybrid inorganic-organic materials for a new generation of solar cells, which have only been investigated for about eleven years. Perovskite solar cells achieve very high efficiencies and can be processed very cost-effectively from solution as extremely thin layers. However, perovskite-based solar cells are not yet stable enough to be commercialised.

Consensus on protocols

Now, international experts from 51 research institutes under the leadership of Prof. Mónica Lira-Cantú (Institut Catala de Nanosciencia i Nanotechnologia) and Prof. Eugene A. Katz (Ben-Gurion University of the Negev) have agreed on the ageing protocols suitable for this class of materials. From the Helmholtz-Zentrum Berlin, Prof. Antonio Abate and his PhD student Hans Köbler were involved. The first author of the study, Dr. Mark Khenkin, is now also working as a postdoc at the HZB Institute PVcomB. Eugene Katz will soon complete a longer research stay at HZB. The consensus statement extends the ISOS protocols developed in 2011 for organic solar cells for the stability assessment of perovskite photovoltaics by further tests and parameters. The test procedures are tailored to the specific characteristics of perovskite solar cells and can thus also map their special properties.

Step forward to industrialisation

In particular, the consensus allows for better comparability of ageing data between international laboratories and thus promotes meaningful analyses of degradation processes. A checklist for reporting the results should further improve reproducibility. This is a major milestone on the way from the laboratory to industry, writes Nature Energy in an editorial to the publication, which has now even been highlighted by the European Commission.

The consensus statement is published in Nature Energy 2020: "Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures".

DOI: 10.1038/s41560-019-0529-5

Editorial in Nature (2020): "Perovskites take steps to industrialization"

Highlight EU Science Hub: "Perovskite PV technology approaches industrialisation as researchers reach consensus on procedures for testing it"

arö


You might also be interested in

  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • From waste to value: The right electrolytes can enhance glycerol oxidation
    Science Highlight
    01.07.2024
    From waste to value: The right electrolytes can enhance glycerol oxidation
    When biomass is converted into biodiesel, huge amounts of glycerol are produced as a by-product. So far, however, this by-product has been little utilised, even though it could be processed into more valuable chemicals through oxidation in photoelectrochemical reactors. The reason for this: low efficiency and selectivity. A team led by Dr Marco Favaro from the Institute for Solar Fuels at HZB has now investigated the influence of electrolytes on the efficiency of the glycerol oxidation reaction. The results can help to develop more efficient and environmentally friendly production processes.
  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.