Joint research group for quantum computing and simulation

© Freie Universität Berlin

Freie Universität Berlin and Helmholtz-Zentrum Berlin (HZB) are now strengthening their cooperation in the field of quantum computing with a new research group. Quantum materials exhibit very interesting properties, which researchers want to use to make data processing significantly faster and more efficient than is currently possible. They can study these materials excellently at synchrotron radiation sources such as BESSY II. It has proven especially promising to predict the material properties in quantum simulations before running the experiments. Taking this approach allows such experiments to be conducted more targetedly.

“Simulating how highly complex material properties emerge”

Jens Eisert is a professor of physics at Freie Universität Berlin and the head of the joint research group. He is an internationally renowned expert for quantum many-body theory, quantum information theory, and quantum optics.

How did this collaboration with HZB come about?

Jens Eisert: Our collaboration arose out of promising and inspiring discussions with Bella Lake, a physicist at Helmholtz-Zentrum Berlin. We had been working on problems of strongly correlated systems in the laboratory, which were difficult to solve with conventional methods. At that stage, the methods of tensor networks were able to deliver the first insights for those systems, but not a comprehensive picture. It took a lot of hard work before we could develop methods powerful enough to model and simulate correlated systems out of the laboratory. From this cooperation, we recognised the major potential that existed in stronger collaboration.

What other points of contact do you see between your research and the topics addressed at HZB?

There are many opportunities. The initial discussions with Bella Lake have culminated in a research programme that offers many possibilities – a genuinely comprehensive programme.To name a few, Johannes Reuther, Oliver Rader, Boris Naydenov, Annika Bande, and other researchers from HZB have announced their interest in collaborating. And indeed it makes sense, from a strategic point of view, to build up a combined initiative on quantum technologies in Berlin.

Are there already any concrete ideas for practical projects the research group can work on?

Definitely. There are many topics that we are already working on, or intend to tackle soon. As a concrete example, we are investigating how highly complex properties emerge out of simple interactions in quantum materials – and how they can be modelled. Together, we also want to delve deeper into questions of realistic quantum computers and quantum simulators. First, we will recruit two new researchers to tackle those questions. They will be working mainly at Freie Universität Berlin, but will maintain very close contact with HZB. I am very pleased about this collaboration because working directly with groups from HZB who also conduct experiments is very fruitful for theoretical physics.


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.