HZB builds undulator for SESAME in Jordan

<span>The APPLE II UE56 double undulator generates brilliant light with variable polarization.</span>

The APPLE II UE56 double undulator generates brilliant light with variable polarization. © HZB

The Helmholtz-Zentrum Berlin is building an APPLE II undulator for the SESAME synchrotron light source in Jordan. The undulator will be used at the Helmholtz SESAME beamline (HESEB) that will be set up there by five Helmholtz Centres. The Helmholtz Association is investing 3.5 million euros in this project coordinated by DESY.

SESAME stands for "Synchrotron Light for Experimental Science and Applications in the Middle East" and provides brilliant X-ray light for research purposes. The third-generation synchrotron radiation source became operational in 2017. Egypt, Iran, Israel, Jordan, Pakistan, the Palestinian Authority, Turkey, and Cyprus are cooperating on this unique project to provide scientists from the Middle East with access to one of the most versatile tools for research.

New beamline for soft x-rays

Thus far, SESAME has four beamlines and will now receive a fifth meant to generate "soft" X-ray light in the energy range between 70 eV and 1800 eV. This X-ray light is particularly suitable for investigating surfaces and interfaces of various materials, for observing certain chemical and electronic processes, and for non-destructive analysis of cultural artefacts. The new beamline will be constructed as the Helmholtz SESAME Beamline (HESEB) by the Helmholtz Centres DESY (coordinating Centre), Forschungszentrum Jülich, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz-Zentrum Berlin (HZB) as well as the Karlsruhe Institute of Technology (KIT).

Undulator made by HZB

The team headed Dr. Johannes Bahrdt at the HZB has assumed the task of constructing and commissioning an undulator for the new beamline. Undulators consist of two opposing arrays of magnets that force the ultrafast electron bunches into wave-like motion. At each reversal point of the wave, the electron bunches emit light that superposes itself on the previously emitted light to produce a coherent, laser-like beam – synchrotron light.

APPLE II UE56 provides polarized light

Johannes Bahrdt has already developed several types of undulators, including the APPLE II UE56 undulator that has been used very successfully at BESSY II for almost 20 years. The APPLE II UE56 double undulator generates brilliant light with variable polarization. This can be used, for example, to study magnetic nanostructures. For SESAME, a UE56 module will now be completely rebuilt, equipped with new magnets and brought up to the state of the art. The undulator team will train their SESAME colleagues and later support them via remote maintenance.

SESAME and HZB

SESAME has a long history with the HZB: at the heart of SESAME are also some accelerator components from BESSY I that were dismantled in 1998. The Helmholtz Association is supporting the Helmholtz SESAME Beamline project (HESEB) with a total of 3.5 million euros. The project will start at the beginning of 2019 and should be completed in four years.

  • Copy link

You might also be interested in

  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.
  • Catalyst Activation and Degradation in Hydrous Iridium Oxides
    Science Highlight
    10.12.2024
    Catalyst Activation and Degradation in Hydrous Iridium Oxides
    The development of efficient catalysts for the Oxygen Evolution Reaction (OER) is crucial for advancing Proton Exchange Membrane (PEM) water electrolysis, with iridium-based OER catalysts showing promise despite the challenges related to their dissolution. Collaborative research by the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH and the Fritz-Haber-Institut has provided insights into the mechanisms of OER performance and iridium dissolution for amorphous hydrous iridium oxides, advancing the understanding of this critical process.
  • Less is more: Why an economical Iridium catalyst works so well
    Science Highlight
    05.12.2024
    Less is more: Why an economical Iridium catalyst works so well
    Iridium-based catalysts are needed to produce hydrogen using water electrolysis. Now, a team at HZB has shown that the newly developed P2X catalyst, which requires only a quarter of the Iridium, is as efficient and stable over time as the best commercial catalyst. Measurements at BESSY II have now revealed how the special chemical environment in the P2X catalyst during electrolysis promotes the oxygen evolution reaction during water splitting.