Helmholtz Virtual Institute MiCo: Article selected as journal highlight for 2017

First author is the mathematician Sibylle Bergmann, whose PhD work is funded by MiCo.

First author is the mathematician Sibylle Bergmann, whose PhD work is funded by MiCo. © WIAS

The Helmholtz Virtual Institute MiCo offers a platform through which the Helmholtz-Zentrum Berlin conducts joint research with universities and other partners on the topic of microstructures for thin-film solar cells. The journal Modelling and Simulation in Materials Science and Engineering recently selected an article produced through MiCo as the highlight of those published by the journal during 2017.

The paper deals with the modelling of liquid/solid interface kinetics in silicon, the most common material used for solar cells. First author is mathematician Sibylle Bergmann, a researcher at the Weierstrass Institute who is funded by the Helmholtz Virtual Institute MiCo (Microstructure Control for thin-film solar cells).

The scientific article was evaluated by the reviewers as outstanding and was retrieved over 900 times, a particularly high number for a technical article from this subject area. The publication is available through Open Access.

 

Published in Modelling and Simulation in Materials Science and Engineering:  „Anisotropic Solid–Liquid Interface Kinetics in Silicon: An Atomistically Informed Phase-Field Model“; S. Bergmann, K. Albe, E. Flegel, D. A. Barragan-Yani & B. Wagner

DOI: 10.1088/1361-651X/aa7862

More information on Helmholtz Virtuelle Institut "Microstructure Control for thin-film solar cells"

arö

  • Copy link

You might also be interested in

  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!