7.4 million euros from the EFRE fund: HZB is setting up a new application laboratory for developing superconducting accelerator components

The application laboratory “SupraLab@HZB” is funded by the EFRE Fonds.

The application laboratory “SupraLab@HZB” is funded by the EFRE Fonds.

A complex infrastructure will be set up at the SupraLab@HZB for testing the superconducting cavities and developing entire installable modules.

A complex infrastructure will be set up at the SupraLab@HZB for testing the superconducting cavities and developing entire installable modules.

Helmholtz-Zentrum Berlin is receiving 7.4 million euros from the European Regional Development Fund (EFRE). The money is being used to set up the application laboratory “SupraLab@HZB” for the advancement of high-current superconducting cavities. These components will be needed for operating the next generation of novel, high-performance light sources. The laboratory will also provide complex superconducting component test beds for use by companies and research institutes in the region.

“We are very grateful for the funding from EFRE, and thank in particular the State of Berlin for supporting our application. With SupraLab@HZB, we will achieve a milestone in the development of pioneering accelerator technology. The creation of this application laboratory will generate know-how for future accelerators and novel lightsources. The development of this key technology also presents attractive economic opportunities for the research and industrial landscape of Berlin,” says Prof. Dr. Anke Kaysser-Pyzalla, scientific director of HZB.   

To set up the new application laboratory, HZB is applying its internationally renowned expertise in the development of continuous wave (CW) superconducting accelerator components. “The advantage of these CW superconducting cavities is that they permanently apply a very high accelerator field and at the same time provide the freedom to optimise the geometry for high-current mode. So not only do they accelerate a high electron current; they also offer a practically freely selectable time structure (pulse sequence) of the current. Thanks to the EFRE funding, we now have the opportunity to develop this technology a great deal further until it is ready for application in light sources,” says Prof. Dr. Jens Knobloch, head of the HZB institute “SRF – Science and Technology” (ISRF), which has assumed the scientific direction of the SupraLab.

The HZB researchers aim to use this technology as part of the upgrade of BESSY II into a variable pulse length storage ring, BESSY VSR. For the first time, high-current superconducting cavities will be used to produce long and short pulses (in the picosecond range) of high-brilliancy light simultaneously in the one storage ring. Flexibly selectable pulse lengths will go a long way to resolving many unanswered questions in research. They will allow materials for energy conversion, for example, or future energy-efficient data storage (spintronics) to be studied more thoroughly and developed further than ever before.

For the SupraLab@HZB, the researchers want to develop and qualify not only cavities but also entire installable modules. Developing these superconducting modules, however, will require enormous technical effort. Accordingly, a complex infrastructure will be set up at the SupraLab@HZB for testing the cavities and systems. Plans include investments in cryogenic systems and high-frequency emitters, among other things. Once complete, the application laboratory will promote lasting technology transfer and cooperation with regional and national companies.

The project is being funded from the European Regional Development Fund as of 1 January 2017, and will run until the end of 2019. Helmholtz-Zentrum Berlin is contributing an equal sum from its own means. Thus, a total of 14.8 million euros is available for setting up the new application laboratory SupraLab@HZB.

Clips about BESSY VSR

- about the project

- about the principle and the problem of BESSY VSR

Website BESSY VSR

(sz)


You might also be interested in

  • Clean cooking fuel with a great impact for southern Africa
    News
    19.04.2024
    Clean cooking fuel with a great impact for southern Africa
    Burning biomass for cooking causes harmful environmental and health issues. The German-South African GreenQUEST initiative is developing a clean household fuel. It aims to reduce climate-damaging CO2 emissions and to improve access to energy for households in sub-Saharan Africa.

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.
  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.