Freigeist Fellowship for Tristan Petit

Dr. Tristan Petit will broaden his research on nanocarbon materials with the Freigeist Fellowship.

Dr. Tristan Petit will broaden his research on nanocarbon materials with the Freigeist Fellowship. © HZB

For his project on nanodiamond materials and nanocarbon, Dr. Tristan Petit has been awarded a Freigeist Fellowship from the VolkswagenStiftung. The grant covers a five-year period and will enable him to establish his own research team. The VolkswagenStiftung is funding with these prestigious fellowships outstanding postdocs planning original research that transcends the bounds of their own field.

Following his doctoral studies, Dr. Tristan Petit joined the HZB team of Prof. Emad Aziz supported by a post-doctoral stipend from the Alexander von Humboldt Foundation. He had already investigated surface modification of nanodiamonds while exploring their potential for biomedical applications during his doctoral research at the Diamond Sensors Laboratory (CEA) in Gif sur Yvette, France. Petit has since expanded his research interests. This is because nanodiamond materials can also exhibit catalytic effects, in particular when irradiated by sunlight. One dream is to develop synthetic nanodiamond materials for manufacturing solar fuels like methane using sunlight and carbon dioxide, thereby storing solar energy chemically. Aziz and Petit are now working on this project under the European DIACAT research programme.

As a Freigeist Fellow, Petit will investigate how nanocarbon materials in aqueous solutions interact with their environment. These interactions have hardly been studied so far, but they are essential for developing new applications and being better able to assess risks.

It is very difficult to study nanocarbon materials in aqueous solutions experimentally, though. Spectrographic methods using X-ray light can provide information about the electrochemical and photochemical processes. Petit relies on specialised setups for this such as LiXEdrom at BESSY II that were developed at HZB specifically for these kinds of experiments. He intends to use infrared spectroscopy to determine the configuration of water molecules surrounding the nanoparticles. Petit also plans to carry out sequential laser-based pump-probe measurements in order to observe ultrafast electronic processes in the nanoparticles. The methods have already proven themselves in nanocarbon solid-state experiments, but their utilisation in studying nanocarbon in liquids is new, however.

“The Freigeist Fellowship makes it possible for me to research these problems comprehensively. Once we better understand the complex interactions between nanocarbon particles in an aqueous environment, we will be able to develop a new generation of carbon-based nanomaterials for different applications – from photocatalysis of solar fuels to medical applications”, says Petit. The Freigeist Fellowship is accompanied by funding of 805,000 EUR, of which 375,000 EUR is provided by HZB in-house resources and 430,000 EUR by the VolkswagenStiftung.

As a result, there are now two Freigeist Fellows on Aziz’ team. Dr. Annika Bande also received a Freigeist Fellowship last year and has since been working at the HZB Institute for Methods of Material Development headed by Aziz.


Further information on the Freigeist Fellowships: www.volkswagenstiftung.de/freigeist-fellowships.

arö


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.