Neutron Tomography technique reveals phase fractions of crystalline materials in 3-Dimensions

Reconstructed energy-selective neutron tomography: Visualization of austenite and martensite distribution in torsion (two images to left) and tensile (image to the right) loading.<br />

Reconstructed energy-selective neutron tomography: Visualization of austenite and martensite distribution in torsion (two images to left) and tensile (image to the right) loading.
© HZB/Wiley VCH

The work that was carried out at CONRAD is featuredon on the cover of &ldquo;Advanced Materials&rdquo;.<br />

The work that was carried out at CONRAD is featuredon on the cover of “Advanced Materials”.
© Wiley VCH

Researchers at Helmholtz-Zentrum Berlin (HZB) and The University of Tennessee Knoxville (UTK) developed a novel method, based on energy-selective neutron imaging for visualization of crystalline phase distributions within the bulk of metallic samples.

The method overcomes limitations of existing techniques which are limited to the surface or small-sized specimens, and allows a 3-D representation of the phase fractions within the sample volume. The work has just been published in the journal “Advanced Materials”.

“For many engineering applications it is of major importance to characterize the bulk of materials spatially, instead of only probing selected locations. The new method provides exactly that capability, and the HZB-UTK team has demonstrated it by using samples made from stainless steel that undergo a phase transformation after being subjected to tensile and torsional deformation.”, said Prof. Dayakar Penumadu from UTK. He and UTK Ph.D. student Robin Woracek collaborated with the researchers Ingo Manke, Nikolay Kardjilov and André Hilger from the Imaging Group at the Institute of Applied Materials (F-IAM) at HZB on establishing new quantitative imaging methods by making use of diffraction contrast due to Bragg scattering in polycrystalline materials. Since the measurement method uses neutrons of selected wavelengths, the current work will also pave the way to implement such methods at Spallation Neutron Sources. The investigations were performed at the recently upgraded neutron imaging beamline CONRAD at BERII, which provides optimal instrumentation conditions for such measurements.

The present results provide phase fractions of Austenite and Martensite within the volume of the circular samples. They had a diameter of 8 mm, and CONRAD allowed measuring five samples simultaneously. The tensile samples show highest degree of phase transformation in the necking region as expected, while for the torsion samples the phase transformation increases from the center towards the surface in the radial direction. The quantitative results were confirmed and show excellent agreement for selected locations, using the Residual Stress Analysis and Texture Diffractometer (E3) at the Department Microstructure and Residual Stress Analysis (F-AME) at HZB (collaborator M. Boin).

The investigated stainless steels are widely used, e.g., as automotive and aerospace structural alloys, for major appliances, household items and buildings. The new characterization method can be used to improve both material properties and manufacturing processes. However, the same method is naturally applicable to a wide range of natural and advanced materials, and it has the invaluable advantage of being able to reveal inhomogeneities within the measured volume, which may remain undetected using common techniques.

This research work has just been published in the journal “Advanced Materials”, which has an impact factor of 15,4 and is one of the highest cited materials science journals. The article is available at: http://onlinelibrary.wiley.com/doi/10.1002/adma.201400192/abstract and is featured on the cover. This new characterization technique is expected to have a major immediate impact in developing super-elastic and shape memory alloys, which are of tremendous importance in the medical field also.

Original publication: Woracek, R., Penumadu, D., Kardjilov, N., Hilger, A., Boin, M., Banhart, J. and Manke, I. (2014), “3D Mapping of Crystallographic Phase Distribution using Energy-Selective Neutron Tomography”. Adv. Mater., 26: 4069–4073. doi: 10.1002/adma.201400192 (2014)

arö

  • Copy link

You might also be interested in

  • MXene as a frame for 2D water films shows new properties
    Science Highlight
    13.08.2025
    MXene as a frame for 2D water films shows new properties
    An international team led by Dr. Tristan Petit and Prof. Yury Gogotsi has investigated MXene with confined water and ions at BESSY II. In the MXene samples, a transition between localised ice clusters to quasi-two-dimensional water films was identified by increasing temperature. The team also discovered that the intercalated water structure drives a reversible transition from metallic to semiconducting behaviour of the MXene film. This could enable the development of novel devices or sensors based on MXenes.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.
  • Scrolls from Buddhist shrine virtually unrolled at BESSY II
    Science Highlight
    23.07.2025
    Scrolls from Buddhist shrine virtually unrolled at BESSY II
    The Mongolian collection of the Ethnological Museum of the National Museums in Berlin contains a unique Gungervaa shrine. Among the objects found inside were three tiny scrolls, wrapped in silk. Using 3D X-ray tomography, a team at HZB was able to create a digital copy of one of the scrolls. With a mathematical method the scroll could be virtually unrolled to reveal the scripture on the strip. This method is also used in battery research.