A new concept for the treatment of cancer

Crystal structure of human MTH1 in complex with a key inhibitor.<br />Source: Stockholm University, Prof. Pal Stenmark.

Crystal structure of human MTH1 in complex with a key inhibitor.
Source: Stockholm University, Prof. Pal Stenmark.

A team of researchers from five Swedish universities has identified a new way to treat cancer. They present their concept in the journal „Nature“. It is based on inhibiting a specific enzyme called MTH1. Cancer cells, unlike normal cells, need MTH1 to survive. Without this enzyme, oxidized nucleotides are incorporated into DNA, resulting in lethal DNA double-strand breaks in the cancer cells. The research group at Stockholm University has determined the structure of MTH1 based on diffraction measurements at HZB´s MX-beamline at BESSY II. These detailed structural studies are important for the development of efficient inhibitors targeting MTH1.

In recent decades, the development of new anticancer agents focused on targeting specific genetic defects in cancer cells. These often are effective initially, but later cause trouble due to emerging rapid resistance. In the current study, the researchers present a general enzymatic activity that all cancers tested rely on and that seems to be independent of the genetic changes found in specific cancers. The research team shows that all the investigated cancer tumours need the MTH1 enzyme to survive. In this respect, cancer cells differ from normal cells, which do not need this enzyme.

“The concept is built on the fact that cancer cells have an altered metabolism, resulting in oxidation of nucleotide building blocks,” says Thomas Helleday, professor at Karolinska Institutet, who leads the study: "MTH1 repairs the oxidized building blocks, preventing the oxidative stress from being incorporated into DNA and becoming DNA damage. This allows replication in cancer cells so they can divide and multiply. With an MTH1 inhibitor, the enzyme is blocked and damaged nucleotides enter DNA, causing damage and killing cancer cells."

Normal cells do not need MTH1 as they have regulated metabolism preventing damage of nucleotide building blocks. Finding a general enzymatic activity required only for cancer cells to survive opens up a whole new way of treating cancer.

Original publication:
“MTH1 inhibition kills cancer by preventing sanitation of the dNTP pool”, Helge Gad, Tobias Koolmeister, Ann-Sofie Jemth et al., Nature, online 2 April 2014, doi: 10.1038/nature13181. http://dx.doi.org/10.1038/nature13181.
“Stereospecific targeting of MTH1 by (S)-crizotinib as anticancer strategy”, Kilian V. M. Huber, Eidarus Salah, Branka Radic et al., Nature, online 2 April 2014, doi: 10.1038/nature13194. http://dx.doi.org/10.1038/nature13194

  • Copy link

You might also be interested in

  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.
  • Innovative battery electrode made from tin foam
    Science Highlight
    24.02.2025
    Innovative battery electrode made from tin foam
    Metal-based electrodes in lithium-ion batteries promise significantly higher capacities than conventional graphite electrodes. Unfortunately, they degrade due to mechanical stress during charging and discharging cycles. A team at HZB has now shown that a highly porous tin foam is much better at absorbing mechanical stress during charging cycles. This makes tin foam an interesting material for lithium batteries.