Neues Behandlungskonzept gegen Krebs

Kristallstruktur eines menschlichen MTH1-Proteins in Verbindung mir einem Schlüsselinhibitor. Bildquelle:Stockholm University, Prof. Pal Stenmark.

Kristallstruktur eines menschlichen MTH1-Proteins in Verbindung mir einem Schlüsselinhibitor. Bildquelle:Stockholm University, Prof. Pal Stenmark.

Ein Forscherteam von fünf schwedischen Universitäten hat einen neuen Weg gefunden, Krebs zu behandeln. Ihr Konzept haben die Wissenschaftler jetzt im Fachjournal „Nature“ vorgestellt. Es basiert darauf, ein für Krebszellen charakteristisches Enzym mit der Bezeichnung MTH1 zu blockieren. Im Gegensatz zu normalen Zellen brauchen Krebszellen MTH1, um zu überleben. Ohne MTH1 werden oxidierte Nukleotide in die Krebs-DNA integriert – letale DNA-Doppelstrangbrüche sind die Folge.

Die Forschungsgruppe an der Universität Stockholm hat nun die Struktur von MTH1 aufgeklärt – basierend auf Diffraktionsmessungen, die an der MX-Beamline des HZB an BESSY II vorgenommen wurden. Detaillierte Strukturinformationen sind wichtig für die Entwicklung effizienter MTH1-Inhibitoren.

In der Vergangenheit hat sich die Entwicklung von Krebs-Therapeutika darauf konzentriert, spezifische genetische Defekte in Krebszellen zu adressieren. Dieses Vorgehen ist zunächst oft sehr effektiv – später entstehen aber erhebliche Probleme, weil die Krebszellen schnelle Resistenzen gegen die Medikamente ausbilden. In der vorliegenden Studie stellen die Wissenschaftler eine allgemeine enzymatische Aktivität vor, die sie bei allen getesteten Krebsarten gefunden haben und die unabhängig von spezifischen Mutationen einzelner Krebsarten zu sein scheint: Die Forscher konnten zeigen, dass alle untersuchten Tumore MTH1 zum Überleben brauchen. Dadurch unterscheiden sich die Krebszellen von normalen Zellen, die ohne MTH1 überleben können.

„Das Konzept basiert auf der Tatsache, dass Krebszellen einen veränderten Stoffwechsel haben“, sagt der Leiter der Studie, Professor Dr. Thomas Helleday vom schwedischen Karolinska-Institut: „Das liegt daran, dass in Krebszellen Nukleotid-Bausteine oxidiert werden. MTH1 repariert die beschädigten DNA-Bausteine und verhindert so, dass der oxidative Stress zur Schädigung der Krebs-DNA führt- die Vermehrungsfähigkeit der Zellen bleibt erhalten.“ Blockieren die Wissenschaftler aber MTH1, werden beschädigte Nukleotide in die DNA eingebaut. Das Erbmaterial des Krebses ist geschädigt – seine Zellen sterben.

Normale Zellen brauchen kein MTH1. Sie haben im Gegensatz zu Krebszellen einen gut regulierten Stoffwechsel, so dass es nicht zu einer oxidativen Schädigung von Nukleotiden kommt. „Die Tatsache, dass wir eine Enzymaktivität gefunden haben, die ausschließlich in Krebszellen zu finden ist, eröffnet ganz neue Möglichkeiten, Krebs zu behandeln“, so Helleday.

Originalpublikation:
“MTH1 inhibition kills cancer by preventing sanitation of the dNTP pool”, Helge Gad, Tobias Koolmeister, Ann-Sofie Jemth et al., Nature, online 2 April 2014, doi: 10.1038/nature13181.?http://dx.doi.org/10.1038/nature13181.
“Stereospecific targeting of MTH1 by (S)-crizotinib as anticancer strategy”, Kilian V. M. Huber, Eidarus Salah, Branka Radic et al., Nature, online 2 April 2014, doi: 10.1038/nature13194?http://dx.doi.org/10.1038/nature13194

  • Link kopieren

Das könnte Sie auch interessieren

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.