First Observation of Undulator Photon Beams Carrying Orbital Angular Momentum

The measurement (left) is impressively well reproduced in a simulation utilizing the HZB-code WAVE.

The measurement (left) is impressively well reproduced in a simulation utilizing the HZB-code WAVE. © J. Bahrdt/HZB

For the first time researchers of HZB observed 99eV photons carrying Orbital Angular Momentum (OAM). The photons were detected in the 2nd harmonic off-axis radiation of a helical undulator. The measurements confirm a theoretical prediction from five years ago. In the visible regime these singular photon beams or OAM-photons can be generated from laser light utilizing phase modulating techniques. The proof-of-principle experiment at BESSY II demonstrates the availability of OAM-photons up to the X-ray regime in low emittance machines, with helical undulators being used for the generation of circularly polarized radiation similar to today’s 3rd generation light sources.

Under normal operation conditions – electron energy of 1.72 GeV - the BESSY II beam emittance (i.e. the electron bunch phase space volume) is too large for the detection of the singular phase structure of OAM-photons. The emittance scales quadratically with the energy, and, thus, at 917 MeV (energy of a former PTB- electron optic) the emittance is reduced roughly by a factor of four which is sufficient for a clear well-defined experiment.  In January 2013 the BESSY II storage ring was ramped down for a 24h shift from 1.72 GeV to 917 MeV. An injection at 917 MeV was not possible and, hence, all storage ring magnets had to be tuned simultaneously during this delicate procedure in order minimize electron losses.

The interference experiment with the double undulator UE56-2 was conducted by a team around Dr. Johannes Bahrdt. One undulator was tuned to helical mode generating OAM photons in the 2nd harmonic. The other undulator served as a reference undulator providing linearly polarized light. The transverse distribution of both photon beams was mapped with a pinhole in front of the 1st optical element. The longitudinal overlap and the interference happened only behind the monochromator. The direct detection of the singular phase distribution of OAM beams would require a complicated wavefront sensor whereas the interference experiment permitted an intensity detection with a simple diode. The signature of the OAMs is a spiral intensity distribution where the orientation is determined by the helicity of the helical undulator and the spiral orientation is a measure of the phase advance between both undulators.

The joint effort of people from several HZB-groups (P. Kuske, P. Schmid: G-IA; R. Müller: NP-ABS, K. Holldack: G-ISRR and J. Bahrdt, M. Scheer: G-AUND) resulted in the success of this experiment, particularly, because it required specific machine conditions and the beam current was only 1mA. Photons carrying orbital angular momentum will be available permanently in synchrotron radiation light sources of the next generation such as Energy Recovery Linacs, Ultimate Storage Rings or Free Electron Lasers. The additional degree of freedom may trigger new spectroscopic experiments which are not possible at existing light sources.

Physical Review Letters (DOI: 10.1103/PhysRevLett.111.034801)

hs


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.