Real time observation of chemical reaction at catalyst

© Gregory Stewart at SLAC National Accelerator Laboratory

Scientists at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory used LCLS, together with computerized simulations, to reveal surprising details of a short-lived early state in a chemical reaction occurring at the surface of a catalyst sample. The study offers important clues about how catalysts work and launches a new era in probing surface chemistry as it happens.

Carbon monoxide (CO), a highly stable, odorless, poisonous gas is one of the by-products of fuel combustion. In the presence of a suitable catalyst, CO molecules will go on to react with oxygen in the air to yield harmless carbon dioxide (CO2) gas. For years, our understanding of the specifics of this catalytic process was rather spotty but now, for the first time, an international team of scientists has taken a closer look at one individual step in the reaction sequence in real-time at the catalytic surface. "Catalysts are used in many industry-relevant chemical reactions so it's definitely worth taking a closer look. In this case, we examined one single fundamental process more closely," says HZB's own Dr. Martin Beye, one of the scientists who has been working on the study.

 

The researchers examined the process by which molecules of CO detach (or rather "desorb") from a ruthenium surface. Like platinum, ruthenium is a metal that has catalytic properties. Using  ultrashort, high-intensity light flashes at LCLS, a free-electron laser at Stanford University's SLAC, they were able to take snapshots that provided clues about how exactly it is that the CO molecules detach themselves from the catalyst's surface. The scientists determined that roughly one third of the molecules doesn't move away from the surface directly but instead becomes trapped near it in a kind of "transition state." This weak chemical bonding ensures that the molecules are unable to detach yet remain mobile parallel to the surface. The researchers suspect that these types of weakly bonded, activated states might play an important role in catalytic processes. Their findings have now been published in the journal Science.

 

Research affiliates include the Center for Free Electron Laser Science at DESY, Hamburg University, SLAC National Accelerator Laboratory, Helmholtz Centre Berlin for Materials and Energy, European XFEL, Potsdam University, Stockholm University, Technical University of Denmark, Stanford University, and the Max Planck Society's Fritz Haber Institute. Main author of the study was Anders Nilsson of Stockholm University and SLAC.


Publication:
“Real-Time Observation of Surface Bond Breaking with an X-ray Laser”; Martina Dell´Angela et al.; Science, 2013; DOI:10.1126/science.1231711

Press release by SLAC: Breakthrough Research Shows Chemical Reaction in Real Time


 

  • Copy link

You might also be interested in

  • Breakthrough at HZB: First electron beam in SEALab advances accelerator physics
    News
    03.04.2025
    Breakthrough at HZB: First electron beam in SEALab advances accelerator physics
    The SEALab team at HZB has achieved a world first by generating an electron beam from a multi-alkali (Na-K-Sb) photocathode and accelerating it to relativistic energies in a superconducting radiofrequency accelerator (SRF photoinjector). This is a real breakthrough and opens up new options for accelerator physics.
  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.