Chemische Reaktion am Katalysator in Echtzeit beobachtet

© Gregory Stewart at SLAC National Accelerator Laboratory

Eine internationale Gruppe von Wissenschaftlern hat am Freie-Elektronenlaser LCLS in Stanford erstmals in Echtzeit beobachtet, wie sich Kohlenmonoxid-Gas an der Oberfläche eines Katalysators genau verhält. Dabei wird ein Teil der CO-Moleküle offenbar dicht über der Oberfläche schwach gebunden. Damit können sich die Moleküle zwar nicht entfernen, bleiben aber parallel zur Oberfläche beweglich, so dass sie möglicherweise mit weiteren Reaktionspartnern reagieren können.Die Forscher konnten damit einen Teilschritt einer elementar wichtigen Reaktion aufklären.

Kohlenmonoxid ist ein geruchloses, giftiges Gas, das zum Beispiel bei der Verbrennung von Treibstoff entsteht. Erst ein geigneter Katalysator sorgt dafür, dass Kohlenmonoxid-Moleküle mit Luftsauerstoff zu ungiftigem Kohlendioxid-Gas weiterreagieren. Bislang war nur der grobe Ablauf dieses katalytischen Prozesses klar. „Katalysatoren werden bei so vielen industrierelevanten chemischen Reaktionen eingesetzt, dass es wirklich lohnt,  genauer hinzuschauen. Das haben wir hier am Beispiel eines elementaren Prozesses nun gemacht“, sagt Dr. Martin Beye vom HZB, der an der Studie beteiligt war.

Die Forscher haben untersucht, wie sich Kohlenmonoxid-Moleküle von einer Rutheniumoberfläche ablösen (desorbieren). Ruthenium ist ein Metall, das ähnlich wie Platin als Katalysator wirken kann. Mit ultrakurzen und hochintensiven Lichtblitzen am Freie-Elektronenlaser LCLS am SLAC in Stanford machten sie Momentaufnahmen, die Rückschlüsse darüber erlauben, wie sich die CO-Moleküle von der Katalysatoroberfläche lösen. Sie beobachteten, dass etwa ein Drittel der CO-Moleküle nicht direkt von der Oberfläche wegfliegt, sondern dicht über der Oberfläche in einer Art ”Zwischenzustand” gefangen wird. Diese schwache Bindung sorgt dafür, dass die Moleküle sich nicht wieder entfernen können, aber trotzdem parallel zur Oberfläche beweglich bleiben.Solche schwachgebunden, aktivierten Zustände könnten eine wichtige Rolle in katalytischen Prozesse spielen, vermuten die Forscher. Ihre Ergebnisse haben sie nun im Fachmagazin Science veröffentlicht.

Beteiligt an der internationalen Kollaboration waren Forscher aus dem Center for Free Electron Laser Science bei DESY und der Universität Hamburg, SLAC National Accelerator Laboratory, Helmholtz-Zentrum Berlin für Materialien und Energie, European XFEL, Universität Potsdam, Stockholm University, Technical University of Denmark, Stanford University, Fritz-Haber Institut. Hauptautor der Arbeit war Anders Nilsson, Stockholm University und SLAC.

Originalveröffentlichung:
“Real-Time Observation of Surface Bond Breaking with an X-ray Laser”; Martina Dell´Angela et al.; Science, 2013; DOI:10.1126/science.1231711


Presseinfo SLAC: Breakthrough Research Shows Chemical Reaction in Real Time


 

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.