European Union allocates 10 million Euros to thin film solar cell project

Zinc oxide nano-rods as anti-reflective coating on a CIGSe solar cell.<br />©HZB

Zinc oxide nano-rods as anti-reflective coating on a CIGSe solar cell.
©HZB

European research consortium's German partners to include Berlin's Helmholtz Centre and Free University

In the context of its 7th annual 'Framework Programme for Research and Technological Development,' the European Union has approved funding in excess of 10 million Euros for the thin film solar cell project "Scalenano" through 2015. Thirteen different European research groups will collaborate on co-developing chalcogenide solar cell technology with the common goal of cutting production costs while using nanostructured materials to increase thin film module efficiency. The consortium will include Germany's Helmholtz Centre Berlin (HZB) and the Free University of Berlin.

To date, copper indium gallium diselenide (CIGSe) has proved the most efficient of the chalcogenide materials. Traditionally, a process known as vacuum coating has been used to deposit several layers of CIGSe a few micrometers thick onto a glass or foil surface. In an effort to cut costs, one of this European collaborative's many goals includes development of new, environmentally-friendly production methods that are vacuum-independent.

Using new material and building element concepts including use of nanostructured materials, the goal is to bring about a breakthrough increase in efficiency. Through the electrochemical synthesis of nanocrystalline precursors and using new techniques for printing nano particles - similar to the way ink is used in printing - the researchers hope to tap new methods of production. To ensure its success beyond the laboratory setting (which normally uses only a few, isolated solar cells), the scientists aim to test production concepts for purposes of a potential upscale.

Headed by Dr. Thomas Unold, the HZB team's main focus will be on quality control and process monitoring. Development of innovative analytical tools for solar cell characterization during production is already under way. The scientists are hopeful that they will ultimately be able to use these tools to improve the quality of the chalcogenide absorptive material while ensuring high yield and high performance during the upscale.

The new research strategy will also combine thin film absorptive materials with nanostructured transparent conductive oxides (TCOs). In this area of research, the team led jointly by Professor Martha Lux-Steiner and Dr. Sophie Gledhill of the Free University of Berlin and HZB, respectively, are working on adapting, optimizing, and optically modeling zinc oxide nanoarray coated chalcogenide solar cells.

The Berlin-based researchers are also hard at work on the next-generation chalcogenide thin film materials known as kesterides - materials with properties similar to CIGSe albeit minus the indium component, an element, which occurs only rarely in the Earth's crust.

IH

  • Copy link

You might also be interested in

  • Two Humboldt-Fellows join HZB
    News
    09.12.2024
    Two Humboldt-Fellows join HZB
    In 2024, two young scientists joined HZB as Humboldt Fellows. Kazuki Morita joined Prof. Antonio Abate's group and brings his expertise in modelling and data analysis to solar energy research. Qingping Wu is an expert in battery research and works with Prof. Yan Lu on high energy density lithium metal batteries.
  • Less is more: Why an economical Iridium catalyst works so well
    Science Highlight
    05.12.2024
    Less is more: Why an economical Iridium catalyst works so well
    Iridium-based catalysts are needed to produce hydrogen using water electrolysis. Now, a team at HZB has shown that the newly developed P2X catalyst, which requires only a quarter of the Iridium, is as efficient and stable over time as the best commercial catalyst. Measurements at BESSY II have now revealed how the special chemical environment in the P2X catalyst during electrolysis promotes the oxygen evolution reaction during water splitting.
  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.