Holldack, K.; Schüßler-Langeheine, C.; Pontius, N.; Kachel, T.; Baumgärtel, P.; Windsor, Y. W.; Zahn, D.; Goslawski, P.; Koopmans, M.; Ries, M.: Two-color synchrotron X-ray spectroscopy based on transverse resonance island buckets. Scientific Reports 12 (2022), p. 14876/1-7
10.1038/s41598-022-19100-z
Open Accesn Version
Abstract:
We report on a novel multi-color method of X-ray spectroscopy at a Synchrotron radiation source that uses two simultaneously filled electron orbits in an electron storage ring to generate multiple soft or tender X-ray beams of different wavelength. To establish the second orbit, we use nonlinear beam dynamics in the so called TRIBs—transverse resonance island buckets—mode of the BESSY II storage ring, where a second electron orbit winds around the regular one leading to transversely separated source points. X-ray beams of multiple colors are generated by imaging the individual source points via different pathways through a monochromator. The particular colors can be varied by changing the traversal electron beam positions through storage-ring parameters and/or via the monochromator dispersion. As a proof of principle, X-ray absorption spectroscopy is performed on thin Fe films in transmission as well as a scanning transmission measurement on a Fe3GeTe2 sample of inhomogeneous thickness normalizing resonant signals with the pre-edge intensity. Using the extraordinary pointing fidelity of successive X-ray macro-pulses arriving at MHz repetition rates, a detection of tiny contrasts in diluted systems, contrast enhancement in X-ray microscopy as well as fast dynamics studies come into reach.