Where quantum computers can score

The travelling salesman's problem is a classic in mathematics. A traveller is to visit N cities by the shortest route and return to the starting point. As the number N increases, the number of possible routes explodes. This problem can then be solved using approximation methods. Quantum computers could provide significantly better solutions more quickly.

The travelling salesman's problem is a classic in mathematics. A traveller is to visit N cities by the shortest route and return to the starting point. As the number N increases, the number of possible routes explodes. This problem can then be solved using approximation methods. Quantum computers could provide significantly better solutions more quickly. © HZB

The present work (arrow) shows that a certain part of the combinatorial problems can be solved much better with quantum computers, possibly even exactly.

The present work (arrow) shows that a certain part of the combinatorial problems can be solved much better with quantum computers, possibly even exactly. © HZB/Eisert

The travelling salesman problem is considered a prime example of a combinatorial optimisation problem. Now a Berlin team led by theoretical physicist Prof. Dr. Jens Eisert of Freie Universität Berlin and HZB has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.

Quantum computers use so-called qubits, which are not either zero or one as in conventional logic circuits, but can take on any value in between. These qubits are realised by highly cooled atoms, ions or superconducting circuits, and it is still physically very complex to build a quantum computer with many qubits. However, mathematical methods can already be used to explore what fault-tolerant quantum computers could achieve in the future. "There are a lot of myths about it, and sometimes a certain amount of hot air and hype. But we have approached the issue rigorously, using mathematical methods, and delivered solid results on the subject. Above all, we have clarified in what sense there can be any advantages at all," says Prof. Dr. Jens Eisert, who heads a joint research group at Freie Universität Berlin and Helmholtz-Zentrum Berlin.

The well-known problem of the travelling salesman serves as a prime example: A traveller has to visit a number of cities and then return to his home town. Which is the shortest route? Although this problem is easy to understand, it becomes increasingly complex as the number of cities increases and computation time explodes. The travelling salesman problem stands for a group of optimisation problems that are of enormous economic importance, whether they involve railway networks, logistics or resource optimisation. Good enough solutions can be found using approximation methods.

The team led by Jens Eisert and his colleague Jean-Pierre Seifert has now used purely analytical methods to evaluate how a quantum computer with qubits could solve this class of problems. A classic thought experiment with pen and paper and a lot of expertise. "We simply assume, regardless of the physical realisation, that there are enough qubits and look at the possibilities of performing computing operations with them," explains Vincent Ulitzsch, a PhD student at the Technical University of Berlin. In doing so, they unveiled similarities to a well-known problem in cryptography, i.e. the encryption of data. "We realised that we could use the Shor algorithm to solve a subclass of these optimisation problems," says Ulitzsch. This means that the computing time no longer "explodes" with the number of cities (exponential, 2N), but only increases polynomially, i.e. with Nx, where x is a constant. The solution obtained in this way is also qualitatively much better than the approximate solution using the conventional algorithm.

"We have shown that for a specific but very important and practically relevant class of combinatorial optimisation problems, quantum computers have a fundamental advantage over classical computers for certain instances of the problem," says Eisert.

arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.
  • Perovskite solar cells: TEAM PV develops reproducibility and comparability
    News
    22.10.2024
    Perovskite solar cells: TEAM PV develops reproducibility and comparability
    Ten teams at Helmholtz-Zentrum Berlin are building a long-term international alliance to converge practices and develop reproducibility and comparability in perovskite materials. The TEAM PV project is funded by the Federal Ministry of Education and Research (BMBF), Germany.