BESSY II: What drives ions through polymer membranes

Membrane.

Membrane. © HZB

Photoelectrolysers and electrolysis cells can produce green hydrogen or fossil-free carbon compounds – but they require ion-exchange membranes. An HZB team has now studied the transport of ions through the membrane in a hybrid liquid gas electrolyzer at the X-ray source BESSY II. Contrary to expectations, however, concentration differences hardly drive electric field ions. Diffusion is therefore the decisive process. This finding could help in the development of highly efficient and significantly more environmentally friendly membrane materials.

Ion exchange membranes are needed in (photo)electrolysers, fuel cells and batteries to separate ions and enable the desired processes. Polymeric membranes such as synthetically produced compounds like NAFION are particularly efficient, but they cannot be degraded. A ban on the use of these “eternal chemicals” is currently under discussion in the European Union. The development of suitable alternatives will be a major challenge. So, it is crucial to understand why NAFION and other established polymeric membranes work so well.

A team led by Dr. Marco Favaro of the HZB Institute for Solar Fuels has now investigated this using a special type of electrolysis cell. Here, the membrane sits on the outer wall and is in contact with both the liquid electrolyte and a gaseous external environment. It can act either as an anode or a cathode, depending on the polarity of the applied potential. This hybrid liquid-gas electrolyzer is considered particularly favorable for the electrochemical conversion of CO2. This is thanks to the higher CO2 concentrations that can be achieved in the gas phase. Thereby overcoming the poor solubility of CO2 in aqueous solutions.

For the study, Favaro and his team used commercially available ion-exchange membranes in contact with a model electrolyte like sodium chloride (NaCl) in water. Water vapor was fed to the gas phase, with the partial pressure of water close to its vapor pressure at room temperature. To analyze the migration of sodium and chloride ions through the membrane, they used in situ ambient pressure hard X-ray photoelectron spectroscopy (AP-HAXPES) at the SpAnTeX end-station at the KMC-1 beamline of BESSY II.

Ion exchange membranes are key component

“Indeed, we were expecting that the ion dynamics was determined, under applied potentials, by the electric fields generated between the anode and cathode of the electrolyzer, and that electromigration was therefore the main driver,” says Marco Favaro.

However, analysis of the data showed otherwise. Electromigration hardly plays a role. The ions simply diffuse across the membrane. The data could be perfectly simulated numerically with a diffusion model. “Our conclusion is that ions move through the polymer membranes in these types of electrolyzers due to hopping mediated by the ionized functional groups present in the membranes. In addition, since water diffuses as well through the polymer, the ions are “dragged” as well” explains Favaro.

These results are exciting for a number of reasons. These types of electrolyzers are a way to convert CO2 into valuable chemicals that can otherwise only be obtained from fossil fuels. Understanding how these devices work helps on the way to decarbonize the economy. On the other hand, the ion-exchange membranes that are a key component of these cells are themselves problematic. The European Union may soon ban the use of persistent chemicals. Understanding the relevant drivers of such transport processes will help to develop new membrane materials that are both efficient, durable, and environmentally friendly. Favaro now intends to take this project forward at HIPOLE. The new Helmholtz Institute in Jena, which will focus on polymer materials for new energy technologies.

arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.