BESSY II: Experimental verification of an exotic quantum phase in Au2Pb

The figure shows the measured energy-momentum relationship for Au<sub>2</sub>Pb. The linear behavior is evidence for a Dirac semimetal. In addition, a Lifshitz transition is observed: At temperatures 223 K and below, the electrons behave like positively charged particles, whereas at room temperature they behave like negatively charged ones.&nbsp;

The figure shows the measured energy-momentum relationship for Au2Pb. The linear behavior is evidence for a Dirac semimetal. In addition, a Lifshitz transition is observed: At temperatures 223 K and below, the electrons behave like positively charged particles, whereas at room temperature they behave like negatively charged ones.  © HZB

A team of HZB has investigated the electronic structure of  Au2Pb at BESSY II by angle-resolved photoemission spectroscopy across a wide temperature range: The results are in accordance with the electronic structure of a three-dimensional topological Dirac semimetal, in agreement with theoretical calculations.

The experimental data unveil some very special features linked to a Lifshitz transition. The study broadens the range of currently known materials exhibiting three-dimensional Dirac phases, and the observed Lifshitz transition demonstrates a viable mechanism to switch the charge carrier type in electric transport without the need for external doping. Moreover, the material becomes interesting as candidate for the realization of a topological superconductor.

The study which includes theory from San Sebastian and synthesis from Princeton was highlighted as Editor's Suggestion in the journal Physical Review Letters.

red.


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.