HZB physicist appointed to Gangneung-Wonju National University, South Korea

Dr Ji-Gwang Hwang at the new optical beam diagnostics platform at BESSY II. He will now take up a professorship at Gangneung-Wonju National University in South Korea.

Dr Ji-Gwang Hwang at the new optical beam diagnostics platform at BESSY II. He will now take up a professorship at Gangneung-Wonju National University in South Korea. © HZB

Since 2016, accelerator physicist Ji-Gwang Hwang has been working at HZB in the department of storage rings and beam physics. He has made important contributions to beam diagnostics in several projects at HZB. He is now returning to his home country, South Korea, having accepted a professorship in physics at Gangneung-Wonju National University.

“We are very sad that he is leaving us, he is a great physicist and team mate and has made many important and valuable contributions to our research! But of course, we are also very happy, that he got this offer from a renowned university,”says Andreas Jankowiak, Director of the HZB-Institute for Accelerator Operation, Development and Technology.

Ji-Gwang Hwang has worked on the optical and RF diagnostics of the electron beam in HZB´s storage rings  and bERLinPro and has analysed beam dynamics in BESSY II and a possible short-pulse option for BESSY III. Recently, together with Prof. Gregor Schiwietz, he established a new platform for optical beam diagnostics at BESSY II, which is now available for optimisation of beam operation and future research. Hwang completed his PhD in Accelerator Physics at the Kyungpook National University in Summer 2014 with a thesis on “Beam dynamics in a high brightness injector for a superconducting Energy Recovery Linac”. His first postdoc took the young accelerator physicist to the Korea Institute of Radiological & Medical Sciences, where tumour patients can be treated with accelerated carbon ions. “The position at HZB was perfect to continue my career in science,” he says.

During his time at HZB, Hwang has contributed to more than 10 peer-reviewed publications and obtained a significant patent. "One of the reasons for moving to Korea is my newborn son," says the physicist. "I didn't want to deprive my mother of her precious time with her only grandson." South Korea also invests heavily in research, with almost 5 per cent of its gross domestic product (GDP) spent on research and development*.

As a physics professor, Hwang now also has new responsibilities, including 12 hours of lectures a week and supervising of students. A task he is happy to take on. "It will take a lot of time at first. But in the next few years I will also set up my own laboratory and of course continue to collaborate with HZB," says the physicist. “We will certainly miss Ji-Gwang in our team,”adds group leader Markus Ries.

* https://www.statista.com/statistics/1326558/south-korea-randd-spending-as-share-of-gdp/

arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.