Thermal insulation for quantum technologies

Electron microscope image of a silicon sample with nanocrystallites of different orientation (coloured), pores (black) and the pore network recognised by the image processing software (white grid lines).

Electron microscope image of a silicon sample with nanocrystallites of different orientation (coloured), pores (black) and the pore network recognised by the image processing software (white grid lines). © D. Kojda / HZB

New energy-efficient IT components often only operate stably at extremely low temperatures. Therefore, very good thermal insulation of such elements is crucial, which requires the development of materials with extremely low thermal conductivity. A team at HZB has now used a novel sintering process to produce nanoporous silicon aluminium samples in which pores and nanocrystallites impede the transport of heat and thus drastically reduce thermal conductivity. The researchers have developed a model for predicting the thermal conductivity, which was confirmed using experimental data on the microstructure of the samples and their thermal conductivity. Thus, for the first time, a method is available for the targeted development of complex porous materials with ultra-low thermal conductivity.

 

Thermal insulation is not only important for buildings, but also in quantum technologies. While insulation panels around a house keep the heat inside, quantum devices require insulation against heat from the outside world, as many quantum effects are only stable at low temperatures. What is needed are materials with extremely low thermal conductivity that are also compatible with the materials used in quantum technology.

Novel sintering process

A team led by Dr Klaus Habicht from HZB has now taken a big step forward in this direction. Using a novel sintering process, they produced samples of silicon and silicon aluminium that were compacted under pressure and an electric field for a few minutes at high temperature. Before that, further microstructures were added to the Si starting material using electrochemical etching processes, which further suppress heat transport. "Silicon is the ideal material here for many reasons, in particular it fits possible devices based on silicon qubits," Habicht points out.

Obstacles for phonon transport

This gave them a number of material samples with tiny pores, crystalline nanoparticles and so-called domain boundaries. Heat conduction works via vibrations of the crystal lattice, so called phonons. However, these phonons can only propagate if they do not encounter obstacles on which they are scattered. Pores as well as nanoparticles and domain boundaries with suitable distances and diameters can become such scattering centres and thus reduce heat conduction.

Separating the contributions

Using an elegant model, the scientists calculated the behaviour of the phonons and thus the thermal conductivity in different samples. Their microstructure was incorporated with parameters such as the size and spacing of pores and nanoparticles. "With this model, we can clearly separate the contributions of nanoparticles and pores to thermal conductivity," Habicht explains.

Microstructures evaluated in detail

The experimental results on microstructures and thermal conductivity in the individual samples confirm the new model. First author Danny Kojda determined the microstructures at the HZB's scanning electron microscope. Using special image analysis software, developed by Kojda for this purpose, he determined the size and number of nanoparticles and pores, as well as their spacing. The thermal conductivity as a function of temperature was carefully measured in all samples. The measured data matched the modelled results extremely well. This means that it is now possible to determine whether, in a sample with a given microstructure, it is mainly the pores or rather the nanocrystallites that are responsible for the suppression of heat conduction.

Materials design

"Understanding the basic transport processes helps us to produce and further develop customised materials with strongly reduced thermal conductivity in a targeted manner," says Kojda.

arö

  • Copy link

You might also be interested in

  • BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • Did marine life in the palaeocene use a compass?
    Science Highlight
    20.10.2025
    Did marine life in the palaeocene use a compass?
    Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.
  • What vibrating molecules might reveal about cell biology
    Science Highlight
    16.10.2025
    What vibrating molecules might reveal about cell biology
    Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.