Perovskite Solar Cells: Insights into early stages of structure formation

Using Small-Angle Scattering the early stages of structure formation in precursor solutions of perovskite solar cells have been explored.

Using Small-Angle Scattering the early stages of structure formation in precursor solutions of perovskite solar cells have been explored. © M. Flatken/HZB

Using small-angle scattering at the PTB X-ray beamline of BESSY II, an HZB team was able to experimentally investigate the colloidal chemistry of perovskite precursor solutions used for solar cell production. The results contribute to the targeted and systematic optimization of the manufacturing process and quality of these exciting semiconductor materials.

Halide perovskite semiconductors are inexpensive, versatile, and high-performance materials used in solar cells as well as optoelectronic devices. The crystalline perovskite thin films required for this purpose are prepared at low temperature from solution: While the solvent evaporates during an annealing step, highly coordinated iodoplumbates interact and subsequently form the polycrystalline thin film. The quality of the thin film ultimately determines the performance of the semiconductor material. Up to now, it has not been possible to achieve a comprehensive impression of the role of the colloidal chemistry in the precursor that is considered to be directional for crystallinity and the further processing.

Observing the formation of structures

Now, an HZB team led by Prof. Antonio Abate has used small-angle scattering to experimentally determine how the initially disordered elements in the precursor solution find their way into primary subunits, interacting and thus providing a first "pre crystalline" arrangement for further conversion to perovskite thin films.

The results indicate that primary subgroups consisting of lead and iodine are formed, so-called iodoplumbates, in which a lead atom is octahedral surrounded by six iodine atoms. These subunits further form a dynamic colloidal network into which the organic methylammonium cation is incorporated, from which the familiar perovskite structure arises.

"While conventional methods have so far limited us to measure only highly diluted precursor solutions, HZB's ASAXS instrument at PTB's FCM beamline at BESSY II makes it possible to study the precursor at a concentration applicable for solar cell fabrication," emphasizes Marion Flatken, who carried out the measurements as part of her PhD thesis.

Small Angle Scattering data show clear evidence

"Small-angle scattering is ideally suited for measuring nanoparticles and substructures in solutions," explains Dr. Armin Hoell, an expert for small-angle scattering and a corresponding author of the study.  "The measured data provide clear evidence for the formation of initial nanometer-sized clusters, which fit the PbI6 octahedron well in terms of dimension and organize themselves in a concentration-dependent manner. Importantly, the measurements are also highly reproducible."

The presented technique and related results can help to further optimize the fabrication process and to more systematically control the quality of perovskite thin films during solar cell fabrication striving for optimal performances.   

arö


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.