Dental materials science: HZB is part of a research project funded by DFG

Artificial and natural interzones on a tooth restored with non-degradable biomaterials are exposed to mechanical (left: stresses acting in compression, tension and shear) and biological challenges (right: bacterial attachment, penetration, and other interactions with biological media).

Artificial and natural interzones on a tooth restored with non-degradable biomaterials are exposed to mechanical (left: stresses acting in compression, tension and shear) and biological challenges (right: bacterial attachment, penetration, and other interactions with biological media). © P. Zaslansky/Charité.

How can dental restorations – such as fillings and crowns – be made to last longer? A new research group centered at Charité – Universitätsmedizin Berlin and Technische Universität (TU) Berlin plans to address this topic by utilizing approaches from both materials science and dentistry. The interdisciplinary ‘InterDent’ research group is funded by the German Research Foundation (DFG). It will receive an initial funding of €2.1 million Euro over three years. Partners also include the Helmholtz-Zentrum Berlin (HZB) and the Max Planck Institute of Colloids and Interfaces (MPI-KG).

The goal of the team is to create better dental materials by shedding light on the ways in which different materials interact with the surrounding tissues. One of the sub-projects aims at predicting the way in which dentine (the hard bony tissue that makes up the tooth´s core) changes over time, depending on the material used for the filling to which it is attached. Employing non-destructive, highly sensitive, high-resolution technology, the researchers will study the microstructure and chemical characteristics of dentine, tracking progressive changes over time as part of an  aging process known as ‘sclerosis’. “We want to use this approach in order to develop a model of sclerotic dentine which will enable us to gain a better understanding of changes in its structure and composition,” says Dr. Ioanna Mantouvalou of the HZB, who leads the sub-project together with Dr. Paul Zaslansky, the research group’s spokesperson, who is project leader at Charité’s Institute of Dental, Oral and Maxillary Medicine.


Charité /red.

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.