Perovskite materials: Neutrons show twinning in halide perovskites

Dr. Michael Tovar working at FALCON at the neutron Source BER II.

Dr. Michael Tovar working at FALCON at the neutron Source BER II. © HZB

The Laue camera captured the diffraction pattern.

The Laue camera captured the diffraction pattern. © HZB

Solar cells based on hybrid halide perovskites achieve high efficiencies. These mixed organic-inorganic semiconductors are usually produced as thin films of microcrystals. An investigation with the Laue camera at the neutron source BER II could now clarify that twinning occurs during crystallisation even at room temperature. This insight is helpful for optimising production processes of halide perovskites. 

A good ten years ago, research teams discovered the class of semi-organic halide perovskites, which are now making a rapid career as new materials for solar cells. The mixed organic-inorganic semiconductors achieved efficiencies of over 25 percent within a few years. They take their name from their basic structure, which is very similar to that of the mineral perovskite (CaTiO3), but contains other components: halide anions, lead cations and organic molecular cations.

MAPI examined

In the case of the most important compound of the class, methylammonium lead iodide CH3NH3PbI3 (usually abbreviated as MAPI), which was also studied here, the molecular cations are methylammonium cations and the anions are iodide anions. Although more than 4000 publications on halide perovskites have appeared in 2019 alone, it has not yet been possible to fully understand their structure. In the case of MAPI this was attributed, among other things, to the fact that they are produced as polycrystalline films at elevated temperature and it was assumed that twinning occurs when they are cooled to room temperature.

Close examination with neutrons

The formation of twins is complex and can significantly change the material properties. It is therefore exciting to investigate this process more closely. "We have now crystallised MAPI at room temperature and analysed the crystals thus formed with the Laue camera Falcon on BER II," says Dr. Joachim Breternitz, HZB. Together with his colleagues Prof. Susan Schorr and Dr. Michael Tovar, he was able to determine from the data that crystals grown at room temperature also form twins. This gives a new insight into the crystallization and growth process of MAPI. "Our results indicate that the crystallisation nuclei have a higher symmetry than the bulk crystals," explains Breternitz.

With these insights, the synthesis of the technologically important thin films can be specifically optimised.

The neutron source BER II has provided neutrons for research until its scheduled shutdown in December 2019. "This was one of our last experiments at FALCON on BER II and I hope that we were able to make useful contributions right up to the end," says Breternitz.

arö

  • Copy link

You might also be interested in

  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.
  • Two Humboldt-Fellows join HZB
    News
    09.12.2024
    Two Humboldt-Fellows join HZB
    In 2024, two young scientists joined HZB as Humboldt Fellows. Kazuki Morita joined Prof. Antonio Abate's group and brings his expertise in modelling and data analysis to solar energy research. Qingping Wu is an expert in battery research and works with Prof. Yan Lu on high energy density lithium metal batteries.
  • Less is more: Why an economical Iridium catalyst works so well
    Science Highlight
    05.12.2024
    Less is more: Why an economical Iridium catalyst works so well
    Iridium-based catalysts are needed to produce hydrogen using water electrolysis. Now, a team at HZB has shown that the newly developed P2X catalyst, which requires only a quarter of the Iridium, is as efficient and stable over time as the best commercial catalyst. Measurements at BESSY II have now revealed how the special chemical environment in the P2X catalyst during electrolysis promotes the oxygen evolution reaction during water splitting.