HZB and TU Berlin: New joint research group at BESSY II

Prof. Birgit Kanngießer heads a joint research group on X-ray methods, which is funded by TU Berlin and HZB.

Prof. Birgit Kanngießer heads a joint research group on X-ray methods, which is funded by TU Berlin and HZB. © Martin Weinhold

Birgit Kanngießer is setting up a joint research group to combine X-ray methods in laboratories and at large-scale facilities. In particular, the physicist wants to investigate how X-ray experiments on smaller laboratory instruments can be optimally complemented with more complex experiments that are only possible at synchrotron sources such as BESSY II. 

Prof. Dr. Birgit Kanngießer is professor of analytical X-ray Physics at the Technische Universität Berlin, where she also heads a large research group. Together with the Max Born Institute she has build up BLiX (Berlin laboratory for innovative X-ray technologies), which brings established X-ray methods from the synchrotron into the laboratory. At BESSY II she was involved as one of the first users from the early on.

Now HZB and TU Berlin are funding a joint research group headed by Birgit Kanngießer to strengthen this cooperation. This should also accelerate the exchange of knowledge and technology between BESSY II and university laboratories.

The joint research group is called 'Combined X-ray methods at BLiX and BESSY II - SyncLab'. On the TU Berlin side, the Berlin laboratory for innovative X-ray technologies (BLiX) is integrated. Kanngießer will initially focus on evaluating how time-resolved measurements using near-edge X-ray spectroscopy in the soft X-ray range on smaller instruments and at BESSY II could complement each other. Further analytical and imaging X-ray methods are to follow in the future.

arö

  • Copy link

You might also be interested in

  • Lithium-sulphur pouch cells investigated at BESSY II
    Science Highlight
    08.01.2025
    Lithium-sulphur pouch cells investigated at BESSY II
    A team from HZB and the Fraunhofer Institute for Material and Beam Technology (IWS) in Dresden has gained new insights into lithium-sulphur pouch cells at the BAMline of BESSY II. Supplemented by analyses in the HZB imaging laboratory and further measurements, a new picture emerges of processes that limit the performance and lifespan of this industrially relevant battery type. The study has been published in the prestigious journal Advanced Energy Materials.
  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.
  • Ernst Eckhard Koch Prize and Synchrotron Radiation Innovation Award
    News
    13.12.2024
    Ernst Eckhard Koch Prize and Synchrotron Radiation Innovation Award
    This year, the Friends of Helmholtz-Zentrum Berlin (Freundeskreis des HZB e. V.) awarded the Ernst Eckhard Koch Prize to Dr. Dieter Skroblin of the Technische Universität Berlin for his outstanding doctoral thesis. The European Innovation Award Synchrotron Radiation went to Dr. Manfred Faubel from the Max Planck Institute for Dynamics and Self-Organization in Göttingen and Dr. Bernd Winter from the Fritz Haber Institute in Berlin. The award ceremony took place at this year's HZB user meeting.