New detector accelerates protein crystallography

60s on the new detector were sufficient to obtain the electron density of the PETase enzyme.

60s on the new detector were sufficient to obtain the electron density of the PETase enzyme. © HZB

<p class="MsoPlainText">The MX-beamline 14.1 has been upgraded with a new, better, faster and more sensitive PILATUS-detector.</p> <p class="MsoPlainText">&nbsp;

The MX-beamline 14.1 has been upgraded with a new, better, faster and more sensitive PILATUS-detector.

  © HZB

Last week a new detector was installed at one of the three MX beamlines at HZB. Compared to the old detector the new one is better, faster and more sensitive. It allows to acquire complete data sets of complex proteins within a very short time.

Proteins consist of thousands of building blocks that can form complex architectures with folded or entangled regions. However, their shape plays a decisive role in the function of the protein in the organism. Using macromolecular crystallography at BESSY II, it is possible to decipher the architecture of protein molecules. For this purpose, tiny protein crystals are irradiated with X-ray light from the synchrotron source BESSY II. From the obtained diffraction patterns, the morphology of the molecules can be calculated.

Now the MX team at BESSY II has put a new detector into operation at the MX beamline 14.1, which works about 2 to 3 times faster than before. The team analysed a crystal from the enzyme PETase as a sample. PETase does partially degrade the plastic PET. In less than a minute, the detector was able to record a complete diffraction data set, which includes data from an angular range of 180 degrees. The data set consists of 1200 images, each of which was exposed to X-rays for 45 milliseconds. "The resulting electron density was of excellent quality and showed all structural features of the enzyme," explains Dr. Manfred Weiss, who leads the MX team at BESSY II.

The success of the HZB MX beamlines is documented by more than 3000 PDB entries from experimental beamtime from more than a hundred international user groups from academia and pharmaceutical research companies.

red.

  • Copy link

You might also be interested in

  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.
  • A record year for our living lab for building-integrated PV
    News
    27.01.2026
    A record year for our living lab for building-integrated PV
    In 2025, our solar facade in Berlin-Adlershof generated more electricity than in any of the previous four years of operation.
  • AI re-examines dinosaur footprints
    Science Highlight
    27.01.2026
    AI re-examines dinosaur footprints
    For decades, paleontologists have pondered over mysterious three-toed dinosaur footprints. Were they left by fierce carnivores, gentle plant-eaters, or even early birds? Now, an international team has used artificial intelligence to tackle the problem—creating a free app that readily lets anyone decipher the past.