Molecules that self-assemble into monolayers for efficient perovskite solar cells

The molecule organises itself on the electrode surface until a dense, uniform monolayer is formed.

The molecule organises itself on the electrode surface until a dense, uniform monolayer is formed. © Saule Magomedoviene / HZB

“Self‐Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells”. Cover of current issue of Advanced Energy Materials.

“Self‐Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells”. Cover of current issue of Advanced Energy Materials. © Wiley/VCH

A team at the HZB has discovered a new method for producing efficient contact layers in perovskite solar cells. It is based on molecules that organise themselves into a monolayer. The study was published in Advanced Energy Materials and appeared on the front cover of the journal.

In recent years, solar cells based on metal halide perovskites have achieved an exceptional increase in efficiency. These materials promise cost-effective and flexible solar cells, and can be combined with conventional PV materials such as silicon to form particularly efficient tandem solar cells. An important step towards mass production is the development of efficient electrical contact layers that would allow deposition of perovskite layers on various substrates.

Molecules form monolayer

Now the HZB Young Investigator Group headed by physicist Dr. Steve Albrecht, in collaboration with former DAAD exchange student Artiom Magomedov from Kaunas University of Technology (KTU) in Lithuania, has synthesized a novel molecule that self-assembles into a monolayer (SAM). The team successfully used this new material as a hole-conducting layer in perovskite solar cells. The molecule is carbazole-based and bonds to the oxide of the transparent electrode via a phosphonic acid anchoring group. Due to the anchoring fragment, this molecule organises itself on the electrode surface until a dense, uniform monolayer is formed. The ultra-thin layer exhibits no optical losses and, thanks to its self-organising property, could conformally cover any surface – including textured silicon in tandem solar-cell architectures.

Adaption possible

Extremely low material consumption is achieved with this technique, and the chemical structure of the SAMs can be adapted to the desired application. Thus, SAMs could also serve as a model system for future investigations of the properties of perovskite interfaces and growth.

New generation to be developed at HySPRINT Lab

The work took place at the HySPRINT laboratory of the HZB where Albrecht's group is now conducting research on a new generation of self-assembling molecules, which already enable solar cells with efficiencies of over 21 %.

Patent application filed

Since this approach to perovskite solar cells has never been considered before and can potentially play a role in industrial processes, the HZB and KTU teams have filed a patent application on the molecule and its use. As the scientific interest for this new contact material class is enormous, the journal has displayed an illustration from the paper on the front cover of the current issue.

Published in Advanced Energy Materials 2018: “Self‐Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells”. Artiom Magomedov, Amran Al‐Ashouri, Ernestas Kasparavičius, Simona Strazdaite, Gediminas Niaura, Marko Jošt, Tadas Malinauskas, Steve Albrecht and Vytautas Getautis.

Doi: 10.1002/aenm.201870139

Autor: Amran Al Ashouri, PhD student and shared first author of the publication

  • Copy link

You might also be interested in

  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.
  • Bernd Rech elected to the BR50 Board of Directors
    News
    30.01.2026
    Bernd Rech elected to the BR50 Board of Directors
    The Scientific Director at Helmholt-Zentrum Berlin is the new face behind the "Natural Sciences" unit at Berlin Research 50 (BR50). Following the election in December 2025, the constituent meeting of the new BR50 Board of Directors took place on 22 January 2026.

    Its members are Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (German Centre for Integration and Migration Research, DeZIM), Volker Haucke (Leibniz Research Institute for Molecular Pharmacology, FMP), Uta Bielfeldt (German Rheumatism Research Centre Berlin, DRFZ) and Bernd Rech (HZB).

  • A record year for our living lab for building-integrated PV
    News
    27.01.2026
    A record year for our living lab for building-integrated PV
    In 2025, our solar facade in Berlin-Adlershof generated more electricity than in any of the previous four years of operation.