Hanwha Q-Cells Quantsol Awards 2018

Alejandra Villanueva Tovar, Pavlo Perkhun, Erin Looney, Tom Veeken, Gizem Birant, Harald Reinhold (from left) have been awarded with an HQCQ 2018.

Alejandra Villanueva Tovar, Pavlo Perkhun, Erin Looney, Tom Veeken, Gizem Birant, Harald Reinhold (from left) have been awarded with an HQCQ 2018. © HZB

Six young researchers received a Hanwha Q-Cells Quantsol Award for their self-developed Photovoltaics. This award is presented by the organizers of the international summer school Quantsol together with the industry.

The International Summer School on Photovoltaics and New Concepts of Quantum Solar Energy Conversion (Quantsol) took place from 2 to 9 September 2018 in Hirschegg / Kleinwalsertal, Austria, for the eleventh time in a row. More than 50 prospective solar researchers from 20 countries attended the event. The participants received a comprehensive introduction into photovoltaics and solar fuel generation. Experts from leading research institutes all over the world presented the basic processes for converting solar energy into chemical and electrical energy and showed ways to their technical application. Newer materials, such as the promising perovskites or oxides for water splitting, as well as special analytical methods were also discussed in detail.

As last year, the Hanwha Q-Cells Quantsol Prize (QHQC Award 2018, see photo), was awarded in four categories. The winners in the team categories were Gizem Birant (University of Hasselt, Belgium) and Alejandra Villanueva Tovar (HZB) for the best self-built solar cell and Pavlo Perkhun (CINaM - Centre Interdisciplinaire de Nanoscience de Marseille, France) and Harald Reinhold (Carl von Ossietzky University of Oldenburg) for the best optical simulation of a perovskite silicon tandem solar cell. In the individual category, the prize went to the most active participant Erin Looney (MIT, USA) and Tom Veeken (AMOLF, Netherlands) for the best single crystal produced with the Epi-Simulator.

“We would like to thank all the helpers from the HZB and the TU Ilmenau as well as both research institutions, without whom it would not have been possible to organize and carry out such a high-quality school," said Prof. Klaus Lips, who – together with Prof. Thomas Hannappel, TU Ilmenau, is organizing this summerschool since eleven years. Due to the great demand, the next Quantsol Summer Schools are planned for September 2019 and 2020.

red.


You might also be interested in

  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.
  • “Research and development in times of war: not only possible, but crucial!”
    Interview
    18.06.2024
    “Research and development in times of war: not only possible, but crucial!”
    The Ukraine Recovery Conference took place in Berlin on 11 and 12 June. On a side-event representatives from Helmholtz, Fraunhofer and Leibniz discussed how research can contribute to the sustainable reconstruction of Ukraine.
    In this interview, Bernd Rech, scientific director at HZB, talks about the importance of research during the war and projects such as Green Deal Ukraina.

  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.