Dr. Raul Garcia Diez wins the Dissertationspreis Adlershof 2017

Dr. Raul Garcia Diez was awarded for his PhD Thesis with the Dissertationspreis Adlershof 2017.

Dr. Raul Garcia Diez was awarded for his PhD Thesis with the Dissertationspreis Adlershof 2017.

Jury with nominees and the winner, Dr. Raul Garcia Diez, (left), Photo: Matthias Brandt

Jury with nominees and the winner, Dr. Raul Garcia Diez, (left), Photo: Matthias Brandt

With his talk on the properties of nanoparticles and how they can be measured more accurately at BESSY II, Dr. Raul Garcia Diez convinced the jury and was awarded the Dissertationspreis Adlershof 2017. Humboldt-Universität zu Berlin, IGAFA e. V. and the WISTA MANAGEMENT GmbH are the sponsors of this prize endowed with 3000 Euros. Garcia Diez completed his PhD in 2017 at PTB and TU Berlin and is now active as a post-doctoral researcher at HZB.

The use of nanoparticles in medicine is continuously growing, for example as platforms for drug-delivery or encapsulating imaging agents. In order to tailor nanoparticles for these applications, the functional properties of these particles need to be well understood.

In his thesis on "Characterization of Nanoparticles by Continuous Contrast Variation with Small-Angle X-ray Scattering" Raul Garcia Diez developed a method to study nanoparticles in a realistic environment with X-ray small-angle scattering in order to gain valuable information. The work was carried out with the HZB SAXS instrument, which is operated at the FCM beamline of the Physikalisch-Technische Bundesanstalt (PTB) in BESSY II under the cooperation between PTB and HZB.

With his work at PTB with Prof. Matthias Richter, he obtained his PhD title in May 2017 at the TU Berlin. Since then, Garcia Diez is a postdoctoral fellow with Prof. Marcus Bär at the HZB.

arö

  • Copy link

You might also be interested in

  • Fascinating archaeological find becomes a source of knowledge
    News
    12.02.2026
    Fascinating archaeological find becomes a source of knowledge
    The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.