User research at BER II: New insights into high-temperature superconductors

Sketch of the stripe order: The charge stripes, which are superconducting, are shown in blue. Reprinted with modifications from Physical Review Letters.

Sketch of the stripe order: The charge stripes, which are superconducting, are shown in blue. Reprinted with modifications from Physical Review Letters.

The colour plots show measured data of the magnetic order (left) and the magnetic excitations (right). The slight mismatch, only visible in high resolution data, demonstrates that the excitations do not originate from the magnetically ordered state. Reprinted with modifications from Physical Review Letters.

The colour plots show measured data of the magnetic order (left) and the magnetic excitations (right). The slight mismatch, only visible in high resolution data, demonstrates that the excitations do not originate from the magnetically ordered state. Reprinted with modifications from Physical Review Letters.

After 30 years of research, there are still many unsolved puzzles about high-temperature superconductors - among them is the magnetic “stripe order” found in some cuprate superconductors. A Danish research team has taken a closer look at these stripes, using high-resolution neutron scattering at the spectrometers FLEXX (HZB) and ThALES (ILL, Grenoble). Their results, now published in Physical Review Letters, challenge the common understanding of stripe order, and may contribute to unveil the true nature  of high-temperature superconductivity.

It has been known for about 30 years that cuprate superconductors become superconducting at surprisingly high temperatures – often above the boiling point of liquid nitrogen (-196 °C). This makes them particularly interesting for applications. Research has revealed that the mechanism which leads to the formation of the superconducting state is different for the cuprates than for conventional superconductors. However, despite intensive studies, this unusual mechanism is still not properly understood. Scientists hope that by understanding what makes high-temperature superconductors special, they will eventually be able to find a material that is superconducting at room temperature.

In the cuprates, superconductivity is intimately connected with the magnetic properties – in stark contrast to conventional superconductors, where magnetism destroys superconductivity. For several cuprate compounds, an unusual state is found where stripes of magnetic order alternate with stripes of charge, which are superconducting (see figure). Also magnetic excitations, apparently associated with the magnetic stripes, have been observed.

A team from Niels Bohr Institute, University of Copenhagen, Denmark, has performed neutron scattering experiments to take a closer look at the magnetic stripes. Using the spectrometers FLEXX (HZB) and ThALES (ILL, Grenoble), they were able to analyse the stripes with very high resolution. They deduced from their data that the magnetic stripe order and the magnetic excitations, although also stripe-like, are not related to each other, but actually originate from different regions in the sample. The comparison with other studies suggests that phase separation into a magnetic and a superconducting phase occurs, and that the striped magnetic excitations belong to the superconducting phase. This model requires a careful re-consideration of many other studies on cuprate superconductors which assume that the stripe order and excitations have the same origin. The results were now published in Physical Review Letters.

Published in Phys. Rev. Letters (2018): "Distinct Nature of Static and Dynamic Magnetic Stripes in Cuprate Superconductors", H. Jacobsen, S. L. Holm, M.-E. Lăcătuşu, A. T. Rømer, M. Bertelsen, M. Boehm, R. Toft-Petersen, J.-C. Grivel, S. B. Emery, L. Udby, B. O. Wells, and K. Lefmann.

DOI: 10.1103/PhysRevLett.120.037003

Zita Hüsges

  • Copy link

You might also be interested in

  • Alternating currents for alternative computing with magnets
    Science Highlight
    26.09.2024
    Alternating currents for alternative computing with magnets
    A new study conducted at the University of Vienna, the Max Planck Institute for Intelligent Systems in Stuttgart, and the Helmholtz Centers in Berlin and Dresden takes an important step in the challenge to miniaturize computing devices and to make them more energy-efficient. The work published in the renowned scientific journal Science Advances opens up new possibilities for creating reprogrammable magnonic circuits by exciting spin waves by alternating currents and redirecting these waves on demand. The experiments were carried out at the Maxymus beamline at BESSY II.
  • BESSY II: Heterostructures for Spintronics
    Science Highlight
    20.09.2024
    BESSY II: Heterostructures for Spintronics
    Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.
  • Langbeinites show talents as 3D quantum spin liquids
    Science Highlight
    23.08.2024
    Langbeinites show talents as 3D quantum spin liquids
    A 3D quantum spin liquid has been discovered in the vicinity of a member of the langbeinite family. The material's specific crystalline structure and the resulting magnetic interactions induce an unusual behaviour that can be traced back to an island of liquidity. An international team has made this discovery with experiments at the ISIS neutron source and theoretical modelling on a nickel-langbeinite sample.