User research at BER II: New insights into high-temperature superconductors

Sketch of the stripe order: The charge stripes, which are superconducting, are shown in blue. Reprinted with modifications from Physical Review Letters.

Sketch of the stripe order: The charge stripes, which are superconducting, are shown in blue. Reprinted with modifications from Physical Review Letters.

The colour plots show measured data of the magnetic order (left) and the magnetic excitations (right). The slight mismatch, only visible in high resolution data, demonstrates that the excitations do not originate from the magnetically ordered state. Reprinted with modifications from Physical Review Letters.

The colour plots show measured data of the magnetic order (left) and the magnetic excitations (right). The slight mismatch, only visible in high resolution data, demonstrates that the excitations do not originate from the magnetically ordered state. Reprinted with modifications from Physical Review Letters.

After 30 years of research, there are still many unsolved puzzles about high-temperature superconductors - among them is the magnetic “stripe order” found in some cuprate superconductors. A Danish research team has taken a closer look at these stripes, using high-resolution neutron scattering at the spectrometers FLEXX (HZB) and ThALES (ILL, Grenoble). Their results, now published in Physical Review Letters, challenge the common understanding of stripe order, and may contribute to unveil the true nature  of high-temperature superconductivity.

It has been known for about 30 years that cuprate superconductors become superconducting at surprisingly high temperatures – often above the boiling point of liquid nitrogen (-196 °C). This makes them particularly interesting for applications. Research has revealed that the mechanism which leads to the formation of the superconducting state is different for the cuprates than for conventional superconductors. However, despite intensive studies, this unusual mechanism is still not properly understood. Scientists hope that by understanding what makes high-temperature superconductors special, they will eventually be able to find a material that is superconducting at room temperature.

In the cuprates, superconductivity is intimately connected with the magnetic properties – in stark contrast to conventional superconductors, where magnetism destroys superconductivity. For several cuprate compounds, an unusual state is found where stripes of magnetic order alternate with stripes of charge, which are superconducting (see figure). Also magnetic excitations, apparently associated with the magnetic stripes, have been observed.

A team from Niels Bohr Institute, University of Copenhagen, Denmark, has performed neutron scattering experiments to take a closer look at the magnetic stripes. Using the spectrometers FLEXX (HZB) and ThALES (ILL, Grenoble), they were able to analyse the stripes with very high resolution. They deduced from their data that the magnetic stripe order and the magnetic excitations, although also stripe-like, are not related to each other, but actually originate from different regions in the sample. The comparison with other studies suggests that phase separation into a magnetic and a superconducting phase occurs, and that the striped magnetic excitations belong to the superconducting phase. This model requires a careful re-consideration of many other studies on cuprate superconductors which assume that the stripe order and excitations have the same origin. The results were now published in Physical Review Letters.

Published in Phys. Rev. Letters (2018): "Distinct Nature of Static and Dynamic Magnetic Stripes in Cuprate Superconductors", H. Jacobsen, S. L. Holm, M.-E. Lăcătuşu, A. T. Rømer, M. Bertelsen, M. Boehm, R. Toft-Petersen, J.-C. Grivel, S. B. Emery, L. Udby, B. O. Wells, and K. Lefmann.

DOI: 10.1103/PhysRevLett.120.037003

Zita Hüsges

  • Copy link

You might also be interested in

  • Fascinating archaeological find becomes a source of knowledge
    News
    12.02.2026
    Fascinating archaeological find becomes a source of knowledge
    The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.