Missing link between new topological phases of matter discovered

The Bismut doping is enhanced from 0% (left) to 2.2% (right). Measurements at BESSY II show that this leads to increased bandgaps.

The Bismut doping is enhanced from 0% (left) to 2.2% (right). Measurements at BESSY II show that this leads to increased bandgaps. © HZB

HZB-Physicists at BESSY II have investigated a class of materials that exhibit characteristics of topological insulators. During these studies they discovered a transition between two different topological phases, one of which is ferroelectric, meaning a phase in the material that exhibits spontaneous electric polarisation and can be reversed by an external electric field. This could also lead to new applications such as switching between differing conductivities.

The HZB researchers studied crystalline semiconductor films made of a lead, tin, and selenium alloy (PbSnSe) that were doped additionally with tiny amounts of the element bismuth. These semiconductors belong to the new class of materials called topological insulators, materials that conduct very well at their surfaces while behaving as insulators internally. Doping with 1-2 per cent bismuth has enabled them to observe a new topological phase transition now. The sample changes to a particular topological phase that also possesses the property of ferroelectricity. This means that an external electric field distorts the crystal lattice, whereas conversely, mechanical forces on the lattice can create electric fields.

The effect can be used to develop new functionality, which is also of interest for potential applications. Ferroelectric phase-change materials are employed in DVDs and flash memories, for example. An electrical voltage displaces atoms in the crystal, transforming the insulating material into a metallic one.

The bismuth doping in the PbSnSe films investigated at HZB served as a perturbation. The number of electrons in bismuth does not fit well in the periodic arrangement of atoms within the PbSnSe crystal. “Tiny changes in the atomic structure give rise to fascinating effects in this class of materials”, explains HZB researcher Dr. Jaime Sánchez-Barriga,  principal investigator coordinating the project.

Following detailed analyses of the measurements, only one conclusion remained: the bismuth doping causes a ferroelectric distortion in the lattice that also changes the allowable energy levels of the electrons. “This problem kept us puzzled during several beamtimes until we reproduced the scientific results on a whole new set of samples”, adds Sánchez-Barriga. “Potential applications could arise through ferroelectric phases - ones that have not been thought of before. Lossless conduction of electricity in topological materials can be switched on and off at will, by electrical pulses or by mechanical strain”, explains Prof. Oliver Rader, head  the department Materials for Green Spintronics at HZB.

 

Publication in Nature communications (2017): Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
Partha S. Mandal, Gunther Springholz, Valentine V. Volobuev, Ondrei Caha, Andrei Varykhalov, Evangelos Golias, Günther Bauer, Oliver Rader, Jaime Sánchez-Barriga

doi: 10.1038/s41467-017-01204-0

 

Note: The investigation has been conducted in close collaboration with researchers from Johannes-Kepler-Universität Linz who also grew the samples. Partha S. Mandal, who carried out the measurements on the material system as part of his dissertation was supported by the Helmholtz Virtual Institute ”New States of Matter and their Excitations”.

 

 

arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.