Intersolar Europe in Munich: HZB research meets solar industry

Intersolar Europe is the world&rsquo;s leading exhibition for the solar industry and its partners and takes place annually at the Messe M&uuml;nchen exhibition center in Munich, Germany.</p>
<p>&copy; Solar Promotion GmbH

Intersolar Europe is the world’s leading exhibition for the solar industry and its partners and takes place annually at the Messe München exhibition center in Munich, Germany.

© Solar Promotion GmbH

At the major international photovoltaics exhibition from 31 May to 2 June 2017, Helmholtz-Zentrum Berlin (HZB) will be exhibiting solar energy research projects and presenting opportunities for industrial cooperation in the field of photovoltaics (PV).

Intersolar Europe is a world leading event where manufacturers, suppliers, distributors and service providers come to learn of new developments in the solar industry. A team from Helmholtz-Zentrum Berlin will be presenting its research in the field of renewable energies at this exhibition in Hall A2, Booth 574 – in particular, the new Helmholtz Innovation Lab HySPRINT and the long-established competence centre for photovoltaics PVcomB. These two institutes primarily address the scientific-technical issues of technology transfer and cooperate closely with industrial partners.

In the Helmholtz Innovation Lab HySPRINT, silicon-based materials are being combined with organometallic perovskite crystals to develop so-called hybrid tandem cells. Such cells can be used for solar generation of electricity or hydrogen.

The Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin (PVcomB) has industrial reference lines for manufacturing CIGS and silicon photovoltaics. Teams of HZB experts are collaborating with industry to develop novel thin-film technologies and products. Joint research projects with industrial partners have already culminated in many successful innovations.

Research into new material systems for photovoltaics is an important focal topic at HZB. The Centre is specialised in so-called energy materials that convert or store energy. This includes solar cells, material systems for generating hydrogen from sunlight, and magnetic material systems for developing energy-efficient information technologies. For studying interfaces and surfaces of thin films, HZB operates the photon source BESSY II and a series of CoreLabs with latest generation equipment.

HZB’s info stand is in Hall A2, Booth 574 (A2.574)

arö

  • Copy link

You might also be interested in

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.
  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!