Helmholtz Virtual Institute International Conference "Dynamic Pathways in Multidimensional Landscapes" 2016

We invite you to join the International Conference "Dynamic Pathways in Multidimensional Landscapes" which will take place in the heart of Berlin at the Magnus-Haus of the German Physical Society from September, 12th -16th, 2016. Now, the Online registration is open.

The conference is conducted by the Helmholtz Virtual Institute "Dynamic Pathways in Multidimensional Landscapes" where transient states of matter are captured in snapshots and electronic and structural dynamics are followed with Synchrotron and Free Electron Laser radiation.

At the conference we cross the boundaries of physics, chemistry and materials science and focus on unifying aspects of materials function. Since we also leave the regime of single photon interactions fundamental aspects of X-ray matter interaction are touched.

Online registration is open. Please submit abstracts of your oral or poster contributions. Out of these we will choose hot topic talks. Please take advantage of our limited accommodation contingency in Berlin and the participation at social events included in the conference fee.

For additional information and updates, please checkthe conference web portal. Other inquiries can be directed to the Conference Secretariat.

We’re looking forward to meeting you in Berlin.

 

(red.)


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.